REFERENCES

1. Trung TQ, Lee NE. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv Mater 2016;28:4338-72.

2. Guo Y, Zhong M, Fang Z, Wan P, Yu G. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett 2019;19:1143-50.

3. Chen L, Lu M, Yang H, et al. Textile-based capacitive sensor for physical rehabilitation via surface topological modification. ACS Nano 2020;14:8191-201.

4. Shen S, Yi J, Sun Z, et al. Human machine interface with wearable electronics using biodegradable triboelectric films for calligraphy practice and correction. Nano Lett 2022;14:225.

5. Wang Y, Zhu W, Deng Y, et al. Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator. Nano Energy 2020;73:104773.

6. Wang J, Li S, Yi F, et al. Sustainably powering wearable electronics solely by biomechanical energy. Nat Commun 2016;7:12744.

7. Wang Y, Yu Y, Wei X, Narita F. Self-powered wearable piezoelectric monitoring of human motion and physiological signals for the postpandemic era: a review. Adv Mater Technol 2022;7:2200318.

8. Nie B, Li R, Cao J, Brandt JD, Pan T. Flexible transparent iontronic film for interfacial capacitive pressure sensing. Adv Mater 2015;27:6055-62.

9. Zhang Y, Hu Y, Zhu P, et al. Flexible and highly sensitive pressure sensor based on microdome-patterned PDMS forming with assistance of colloid self-assembly and replica technique for wearable electronics. ACS Appl Mater Interfaces 2017;9:35968-76.

10. Win Zaw NY, Yun J, Goh TS, et al. All-polymer waterproof triboelectric nanogenerator towards blue energy harvesting and self-powered human motion detection. Energy 2022;247:123422.

11. Xia X, Zhou Z, Shang Y, Yang Y, Zi Y. Metallic glass-based triboelectric nanogenerators. Nat Commun 2023;14:1023.

12. Niu S, Wang S, Lin L, et al. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ Sci 2013;6:3576-83.

13. Kim KN, Kim SY, Choi SH, et al. All-printed wearable triboelectric nanogenerator with ultra-charged electron accumulation polymers based on MXene nanoflakes. Adv Electron Mater 2022;8:2200819.

14. Lai YC, Deng J, Zhang SL, Niu S, Guo H, Wang ZL. Single-thread-based wearable and highly stretchable triboelectric nanogenerators and their applications in cloth-based self-powered human-interactive and biomedical sensing. Adv Funct Mater 2017;27:1604462.

15. Yang W, Chen J, Zhu G, et al. Harvesting energy from the natural vibration of human walking. ACS Nano 2013;7:11317-24.

16. Xing F, Jie Y, Cao X, Li T, Wang N. Natural triboelectric nanogenerator based on soles for harvesting low-frequency walking energy. Nano Energy 2017;42:138-42.

17. Zi Y, Wu C, Ding W, Wang ZL. Maximized effective energy output of contact-separation-triggered triboelectric nanogenerators as limited by air breakdown. Adv Funct Mater 2017;27:1700049.

18. Chu Y, Cao Z, Xu J, et al. Theoretical study of nanogenerator with resistive load and its sensing performance as a motion sensor. Nano Energy 2021;81:105628.

19. Niu S, Liu Y, Wang S, et al. Theoretical investigation and structural optimization of single-electrode triboelectric nanogenerators. Adv Funct Mater 2014;24:3332-40.

20. Niu S, Liu Y, Wang S, et al. Theory of sliding-mode triboelectric nanogenerators. Adv Mater 2013;25:6184-93.

21. Jiang T, Chen X, Han CB, Tang W, Wang ZL. Theoretical study of rotary freestanding triboelectric nanogenerators. Adv Funct Mater 2015;25:2928-38.

22. Chu Y, Han R, Meng F, et al. Theoretical study on the output of contact-separation triboelectric nanogenerators with arbitrary charging and grounding conditions. Nano Energy 2021;89:106383.

23. Wang J, Qian S, Yu J, et al. Flexible and wearable PDMS-based triboelectric nanogenerator for self-powered tactile sensing. Nanomaterials 2019;9:1304.

24. Chang KB, Parashar P, Shen LC, et al. A triboelectric nanogenerator-based tactile sensor array system for monitoring pressure distribution inside prosthetic limb. Nano Energy 2023;111:108397.

25. Lou M, Abdalla I, Zhu M, Yu J, Li Z, Ding B. Hierarchically rough structured and self-powered pressure sensor textile for motion sensing and pulse monitoring. ACS Appl Mater Interfaces 2020;12:1597-605.

26. Cao Y, Guo Y, Chen Z, et al. Highly sensitive self-powered pressure and strain sensor based on crumpled MXene film for wireless human motion detection. Nano Energy 2022;92:106689.

27. Kim DW, Lee JH, Kim JK, Jeong U. Material aspects of triboelectric energy generation and sensors. NPG Asia Mater 2020;12:6.

28. Ryu H, Lee JH, Kim TY, et al. High-performance triboelectric nanogenerators based on solid polymer electrolytes with asymmetric pairing of ions. Adv Energy Mater 2017;7:1700289.

29. Sang M, Kim K, Shin J, Yu KJ. Ultra-thin flexible encapsulating materials for soft bio-integrated electronics. Adv Sci 2022;9:e2202980.

30. Kim NI, Lee JM, Moradnia M, et al. Biocompatible composite thin-film wearable piezoelectric pressure sensor for monitoring of physiological and muscle motions. Soft Sci 2022;2:8.

31. Rasel MS, Maharjan P, Salauddin M, et al. An impedance tunable and highly efficient triboelectric nanogenerator for large-scale, ultra-sensitive pressure sensing applications. Nano Energy 2018;49:603-13.

32. Aazem I, Mathew DT, Radhakrishnan S, et al. Electrode materials for stretchable triboelectric nanogenerator in wearable electronics. RSC Adv 2022;12:10545-72.

33. Jo S, Kim I, Jayababu N, Kim D. Performance-enhanced triboelectric nanogenerator based on the double-layered electrode effect. Polymers 2020;12:2854.

34. Xing C, Tian Y, Yu Z, Li Z, Meng B, Peng Z. Cellulose nanofiber-reinforced MXene membranes as stable friction layers and effective electrodes for high-performance triboelectric nanogenerators. ACS Appl Mater Interfaces 2022;14:36741-52.

35. Busolo T, Ura DP, Kim SK, et al. Surface potential tailoring of PMMA fibers by electrospinning for enhanced triboelectric performance. Nano Energy 2019;57:500-6.

36. Maji D, Das S. Analysis of plasma-induced morphological changes in sputtered thin films over compliant elastomer. J Phys D Appl Phys 2014;47:105401.

37. Han J, Wang Y, Ma Y, Wang C. Enhanced energy harvesting performance of triboelectric nanogenerators via dielectric property regulation. ACS Appl Mater Interfaces 2023;15:31795-802.

38. Zhu G, Peng B, Chen J, Jing Q, Lin Wang Z. Triboelectric nanogenerators as a new energy technology: from fundamentals, devices, to applications. Nano Energy 2015;14:126-38.

39. Tantraviwat D, Buarin P, Suntalelat S, et al. Highly dispersed porous polydimethylsiloxane for boosting power-generating performance of triboelectric nanogenerators. Nano Energy 2020;67:104214.

40. Garcia C, Trendafilova I, Guzman de Villoria R, Sanchez del Rio J. Self-powered pressure sensor based on the triboelectric effect and its analysis using dynamic mechanical analysis. Nano Energy 2018;50:401-9.

41. He J, Xie Z, Yao K, et al. Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics. Nano Energy 2021;81:105590.

42. Lin MF, Xiong J, Wang J, Parida K, Lee PS. Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications. Nano Energy 2018;44:248-55.

43. Liu Z, Zhao Z, Zeng X, Fu X, Hu Y. Expandable microsphere-based triboelectric nanogenerators as ultrasensitive pressure sensors for respiratory and pulse monitoring. Nano Energy 2019;59:295-301.

44. Zhu G, Yang WQ, Zhang T, et al. Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification. Nano Lett 2014;14:3208-13.

45. Zhao Z, Huang Q, Yan C, et al. Machine-washable and breathable pressure sensors based on triboelectric nanogenerators enabled by textile technologies. Nano Energy 2020;70:104528.

46. Wang X, Zhang H, Dong L, et al. Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping. Adv Mater 2016;28:2896-903.

47. Pu X, Liu M, Chen X, et al. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci Adv 2017;3:e1700015.

48. Rao J, Chen Z, Zhao D, et al. Tactile electronic skin to simultaneously detect and distinguish between temperature and pressure based on a triboelectric nanogenerator. Nano Energy 2020;75:105073.

49. Zhong Y, Wang J, Han L, et al. High-performance flexible self-powered triboelectric pressure sensor based on chemically modified micropatterned PDMS film. Sens Actuator A Phys 2023;349:114013.

50. Zheng Z, Yu D, Wang B, Guo Y. Ultrahigh sensitive, eco-friendly, transparent triboelectric nanogenerator for monitoring human motion and vehicle movement. Chem Eng J 2022;446:137393.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/