REFERENCES

1. Verma A, Kaiwart A, Dhar Dubey N, Naseer F, Pradhan S. A review on various types of in-pipe inspection robot. Mater Today Proc 2022;50:1425-34.

2. Mishra D, Agrawal KK, Abbas A, Srivastava R, Yadav RS. PIG [Pipe Inspection Gauge]: an artificial dustman for cross country pipelines. Procedia Comput Sci 2019;152:333-40.

3. Jang H, Kim TY, Lee YC, et al. A review: technological trends and development direction of pipeline robot systems. J Intell Robot Syst 2022;105:59.

4. Kim S, Laschi C, Trimmer B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol 2013;31:287-94.

5. Karipoth P, Christou A, Pullanchiyodan A, Dahiya R. Bioinspired inchworm- and earthworm-like soft robots with intrinsic strain sensing. Adv Intell Syst 2022;4:2100092.

6. Menciassi A, Accoto D, Gorini S, Dario P. Development of a biomimetic miniature robotic crawler. Auton Robots 2006;21:155-63.

7. Pfeil S, Henke M, Katzer K, Zimmermann M, Gerlach G. A worm-like biomimetic crawling robot based on cylindrical dielectric elastomer actuators. Front Robot AI 2020;7:9.

8. Liu J, Li P, Zuo S. Actuation and design innovations in earthworm-inspired soft robots: a review. Front Bioeng Biotechnol 2023;11:1088105.

9. Jung K, Koo JC, Nam J, Lee YK, Choi HR. Artificial annelid robot driven by soft actuators. Bioinspir Biomim 2007;2:S42.

10. Blumenschein LH, Coad MM, Haggerty DA, Okamura AM, Hawkes EW. Design, modeling, control, and application of everting vine robots. Front Roboti AI 2020;7:548266.

11. Kamata M, Yamazaki S, Tanise Y, Yamada Y, Nakamura T. Morphological change in peristaltic crawling motion of a narrow pipe inspection robot inspired by earthworm’s locomotion. Adv Robot 2018;32:386-97.

12. Du L, Ma S, Tokuda K, Tian Y, Li L. Bidirectional locomotion of soft inchworm crawler using dynamic gaits. Front Robot AI 2022;9:899850.

13. Tang Z, Lu J, Wang Z, Ma G, Chen W, Feng H. Development of a new multi-cavity pneumatic-driven earthworm-like soft robot. Robotica 2020;38:2290-304.

14. Gao H, Du J, Tang M, Shi W. Research on a new type peristaltic micro in-pipe robot. In: The 2011 IEEE/ICME International Conference on Complex Medical Engineering; 2011 May 22-25; Harbin, China. IEEE; 2011. pp. 26-30.

15. Das R, Babu SPM, Visentin F, Palagi S, Mazzolai B. An earthworm-like modular soft robot for locomotion in multi-terrain environments. Sci Rep 2023;13:1571.

16. Wang K, Yan G, Ma G, Ye D. An earthworm-like robotic endoscope system for human intestine: design, analysis, and experiment. Ann Biomed Eng 2009;37:210-21.

17. Yanagida T, Adachi K, Yokojima M, Nakamura T. Development of a peristaltic crawling robot attached to a large intestine endoscope using bellows - type artificial rubber muscles. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2012 Oct 07-12; Vilamoura-Algarve, Portugal. IEEE; 2012. pp. 2935-40.

18. Nemitz MP, Mihaylov P, Barraclough TW, Ross D, Stokes AA. Using voice coils to actuate modular soft robots: wormbot, an example. Soft Robot 2016;3:198-204.

19. Saga N, Nakamura T, Ueda S. Study on peristaltic crawling robot using artificial muscle actuator. In: Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003); 2003 Jul 20-24; Kobe, Japan. IEEE; pp. 679-84.

20. Tanise Y, Kishi T, Yamazaki S, Yamada Y, Nakamura T. High-speed response of the pneumatic actuator used in a peristaltic crawling robot inspecting long-distance gas pipes. In: 2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM); 2016 Jul 12-15; Banff, Canada. IEEE; 2016. pp. 1234-9.

21. Ikeuchi M, Nakamura T, Matsubara D. Development of an in-pipe inspection robot for narrow pipes and elbows using pneumatic artificial muscles. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2012 Oct 07-12; Vilamoura-Algarve, Portugal. IEEE; 2012. pp. 926-31.

22. Seok S, Onal CD, Cho KJ, Wood RJ, Rus D, Kim S. Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME T Mech 2013;18:1485-97.

23. Horchler AD, Kandhari A, Daltorio KA, et al. Worm-like robotic locomotion with a compliant modular mesh. In: Wilson S, Verschure P, Mura A, Prescott T, editors. Biomimetic and biohybrid systems. Living machines 2015. Lecture Notes in Computer Science. Springer, Cham; 2015. pp. 26-37.

24. Daltorio KA, Boxerbaum AS, Horchler AD, Shaw KM, Chiel HJ, Quinn RD. Efficient worm-like locomotion: Slip and control of soft-bodied peristaltic robots. Bioinspir Biomim 2013;8:035003.

25. Dai X, Liu Y, Wang W, Song R, Li Y, Zhao J. Design and experimental validation of a worm-like tensegrity robot for in-pipe locomotion. J Bionic Eng 2023;20:515-29.

26. Sato H, Uchiyama K, Mano Y, et al. Development of a compact pneumatic valve using rotational motion for a pneumatically driven mobile robot with periodic motion in a pipe. IEEE Access 2021;9:165271-85.

27. Seok S, Onal CD, Wood R, Rus D, Kim S. Peristaltic locomotion with antagonistic actuators in soft robotics. In: 2010 IEEE International Conference on Robotics and Automation; 2010 May 03-07; Anchorage, USA. IEEE; 2010. pp. 1228-33.

28. Mano Y, Ishikawa R, Yamada Y, Nakamura T. Development of high-speed type peristaltic crawling robot for long-distance and complex-line sewer pipe inspection. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018 Oct 01-05; Madrid, Spain. IEEE; 2018. pp. 8177-83.

29. Yamamoto T, Konyo M, Tadakuma K, Tadokoro S. High-speed sliding-inchworm motion mechanism with expansion-type pneumatic hollow-shaft actuators for in-pipe inspections. Mechatronics 2018;56:101-14.

30. You TL, Philamore H, Matsuno F. A magneto-active elastomer crawler with peristaltic and caterpillar locomotion patterns. Actuators 2021;10:74.

31. Polygerinos P, Wang Z, Overvelde JTB, et al. Modeling of soft fiber-reinforced bending actuators. IEEE T Robot 2015;31:778-89.

32. Shi L, Guo S, Li M, et al. A novel soft biomimetic microrobot with two motion attitudes. Sensors 2012;12:16732-58.

33. Lin HT, Leisk GG, Trimmer B. GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinsp Biomim 2011;6:26007.

34. Omori H, Hayakawa T, Nakamura T. Locomotion and turning patterns of a peristaltic crawling earthworm robot composed of flexible units. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2008 Sep 22-26; Nice, France. IEEE; 2008. pp. 1630-5.

35. Zhang Y, Zhang M, Sun H, Jia Q. Design and motion analysis of a flexible squirm pipe robot. In: 2010 International Conference on Intelligent System Design and Engineering Application; 2010 Oct 13-14; Changsha, China. IEEE; 2010. pp. 527-31.

36. Liu X, Song M, Fang Y, Zhao Y, Cao C. Worm-inspired soft robots enable adaptable pipeline and tunnel inspection. Adv Intell Syst 2022:4;2100128.

37. Bertetto AM, Ruggiu M. In-pipe inch-worm pneumatic flexible robot. In: 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556); Como, Italy. IEEE; 2001. pp. 1226-31.

38. Tanaka T, Harigaya K, Nakamura T. Development of a peristaltic crawling robot for long-distance inspection of sewer pipes. In: 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics; 2014 Jul 08-11; Besacon, France. IEEE; 2014. pp. 1552-7.

39. Basem F, Bastaki N. Worm robot with dynamic adaptation to pipe diameter for in-pipe inspection 1. 2014. Available from: https://www.semanticscholar.org/paper/Worm-Robot-with-Dynamic-Adaptation-to-Pipe-Diameter-Yousef-Bastaki/b666c6bf7259ee0b7feb898f99d12359f6a11c76. [Last accessed on 5 Mar 2024].

40. Kusunose K, Akagi T, Dohta S, Kobayashi W, Nakagawa K. Development of pipe holding mechanism and bending unit using extension type flexible actuator for flexible pipe inspection robot. Int J Mech Eng Robot Res 2019;8:129-34.

41. Hayashi K, Akagi T, Dohta S, et al. Improvement of pipe holding mechanism and inchworm type flexible pipe inspection robot. Int J Mech Eng Robot Res 2020;9:894-9.

42. Persson BNJ. Theory of rubber friction and contact mechanics. J Chem Phys 2001;115:3840-61.

43. Fang D, Jia G, Wu J, et al. A novel worm-like in-pipe robot with the rigid and soft structure. J Bionic Eng 2023;20:2559-69.

44. Li M, Wang G, Wang J, Zheng Y, Jiao X. Development of an inchworm-like soft pipe robot for detection. Int J Mech Sci 2023;253:108392.

45. Shen YZ, Lin GC, Tan HF. A method for predicting the blasting pressure of balloons using the surface strain in low pressure. Adv Mech Eng 2019;11:1-8.

46. Tang C, Du B, Jiang S, et al. A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale. Sci Robot 2022:7;66.

47. Jiang C, Pei Z. An in-pipe worm robot with pneumatic actuators based on origami paper-fabric composites. Text Res J 2021:91;2724-37.

48. Takahashi M, Hayashi I, Iwatsuki N, Suzumori K, Ohki N. The development of an in-pipe microrobot applying the motion of an earthworm. In: 1994 5th International Symposium on Micro Machine and Human Science Proceedings; 1994 Oct 02-04; Nagoya, Japan. IEEE; 1994. pp. 35.

49. Verma MS, Ainla A, Yang D, Harburg D, Whitesides GM. A soft tube-climbing robot. Soft Robot 2018;5:133-7.

50. Hu ZJ, Cheneler D. Bio-inspired soft robot for locomotion and navigation in restricted spaces. J Robot Automat 2021;5:236-50.

51. Daerden F, Lefeber D, Verrelst B, Van Ham R. Pleated pneumatic artificial muscles: actuators for automation and robotics. In: 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Proceedings (Cat. No.01TH8556); 2001 Jul 08-12; Como, Italy. IEEE; 2001. pp. 738-43.

52. Kalita B, Leonessa A, Dwivedy SK. A review on the development of pneumatic artificial muscle actuators: force model and application. Actuators 2022;11:288.

53. Serres JL, Reynolds DB, Phillips CA, Rogers DB, Repperger DW. Characterization of a pneumatic muscle test station with two dynamic plants in cascade. Comput Method Biomec 2010;13:11-8.

54. Serres JL, Reynolds DB, Phillips CA, Gerschutz MJ, Repperger DW. Characterisation of a phenomenological model for commercial pneumatic muscle actuators. Comput Method Biomec 2009;12:423-30.

55. Zhang Z, Wang X, Wang S, Meng D, Liang B. Design and modelling of a parallel-pipe-crawling pneumatic soft robot. IEEE Access 2019;7:134301-17.

56. Wickramatunge KC, Leephakpreeda T. Empirical modeling of pneumatic artificial muscle. In: Proceedings of the International MultiConference of Engineers and Computer Scientists 2009 Vol II; 2009 Mar 08-20; Hong Kong, China. IMECS 2009. Available from: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fe4608d1e7162cbd52ed47534fccb29668b9f768. [Last accessed on 5 Mar 2024]

57. Wickramatunge KC, Leephakpreeda T. Study on mechanical behaviors of pneumatic artificial muscle. Int J Eng Sci 2010;48:188-98.

58. Yamamoto T, Sakama S, Kamimura A. Pneumatic duplex-chambered inchworm mechanism for narrow pipes driven by only two air supply lines. IEEE Robot Autom Lett 2020;5:5034-42.

59. Lim J, Park H, An J, Hong YS, Kim B, Yi BJ. One pneumatic line based inchworm-like micro robot for half-inch pipe inspection. Mechatronics 2008;18:315-22.

60. Gilbertson MD, McDonald G, Korinek G, Van de Ven JD, Kowalewski TM. Serially actuated locomotion for soft robots in tube-like environments. IEEE Robot Autom Lett 2017;2:1140-7.

61. Ko UH, Kumar V, Rosen B, Varghese S. Characterization of bending balloon actuators. Front Robot AI 2022;9:991748.

62. Rad C, Hancu O, Lapusan C. Data-driven kinematic model of pneunets bending actuators for soft grasping tasks. Actuators 2022;11:58.

63. Hwang Y, Paydar OH, Candler RN. Pneumatic microfinger with balloon fins for linear motion using 3D printed molds. Sensor Actuat 2015;234:65-71.

64. Xavier MS, Fleming AJ, Yong YK. Experimental characterisation of hydraulic fiber-reinforced soft actuators for worm-like robots. In: 2019 7th International Conference on Control, Mechatronics and Automation (ICCMA); 2019 Nov 06-08; Delft, Netherlands. IEEE; 2019. pp. 204-9.

65. Zhang B, Fan Y, Yang P, Cao T, Liao H. Worm-like soft robot for complicated tubular environments. Soft Robot 2019;6:399-413.

66. Webster RJ III, Jones BA. Design and kinematic modeling of constant curvature continuum robots: a review. Int J Robot Res 2010;29:1661-83.

67. Zhang X, Pan T, Heung HL, Chiu PWY, Li Z. A Biomimetic soft robot for inspecting pipeline with significant diameter variation. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS); 2018 Oct 01-05; Madrid, Spain. IEEE; 2018. pp. 7486-91.

68. Liu Z, Kleiner Y. State of the art review of inspection technologies for condition assessment of water pipes. Measurement 2013;46:1-15.

69. Guan L, Gao Y, Liu H, An W, Noureldin A. A review on small-diameter pipeline inspection gauge localization techniques: problems, methods and challenges. In: 2019 International Conference on Communications, Signal Processing, and their Applications (ICCSPA); 2019 Mar 19-21; Sharjah, United Arab Emirates. IEEE; 2019. p. 1-6.

70. Ayali A, Lange AB. Rhythmic behaviour and pattern-generating circuits in the locust: key concepts and recent updates. J Insect Physiol 2010;56:834-43.

71. Lin Y, Xu YX, Juang JY. Single-actuator soft robot for in-pipe crawling. Soft Robot 2023;10:174-86.

72. Gray J, Lissmann HW. Studies in animal locomotion: VII. locomotory reflexes in the earthworm. J Exp Biol 1938;15:506-17.

73. Kandhari A, Horchler AD, Zucker GS, Daltorio KA, Chiel HJ, Quinn RD. Sensing contact constraints in a worm-like robot by detecting load anomalies. In: Lepora N, Mura A, Mangan M, Verschure P, Desmulliez M, Prescott T, editors. Biomimetic and biohybrid systems. Springer, Cham; 2016. pp. 97-106.

74. Kandhari A, Stover MC, Jayachandran PR, et al. Distributed sensing for soft worm robot reduces slip for locomotion in confined environments. In: Vouloutsi V, editor. Biomimetic and biohybrid systems. Springer, Cham; 2018. pp. 236-48.

75. Calderón AA, Ugalde JC, Chang L, Cristóbal Zagal J, Pérez-Arancibia NO. An earthworm-inspired soft robot with perceptive artificial skin. Bioinspir Biomim 2019;14:056012.

76. Aitken JM, Evans MH, Worley R, et al. Simultaneous localization and mapping for inspection robots in water and sewer pipe networks: a review. IEEE Access 2021;9:140173-98.

77. Goldoni R, Ozkan-Aydin Y, Kim YS, et al. Stretchable nanocomposite sensors, nanomembrane interconnectors, and wireless electronics toward feedback-loop control of a soft earthworm robot. ACS Appl Mater Interfaces 2020;12:43388-97.

78. Negm A, Ma X, Aggidis G. Review of leakage detection in water distribution networks. IOP Conf Ser Earth Environ Sci 2023;1136:012052.

79. Ishikawa R, Tomita T, Yamada Y, Nakamura T. Investigation of odometry method of pipe line shape by peristaltic crawling robot combined with inner sensor. In: 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM); 2017 Jul 03-07; Munich, Germany. IEEE; 2017. pp. 1279-84.

80. Se S, Lowe DG, Little JJ. Vision-based global localization and mapping for mobile robots. IEEE T Robot 2005;21:364-75.

81. Lu D, Zhang Y, Gong Z, Wu T. A SLAM method based on multi-robot cooperation for pipeline environments underground. Sustainability 2022;14:12995.

82. Zhang R, Evans MH, Worley R, Anderson SR, Mihaylova L. Improving SLAM in pipe networks by leveraging cylindrical regularity. In: Towards Autonomous Robotic Systems. Lecture Notes in Computer Science. Springer, Cham; 2021. pp. 56-65.

83. Lim H, Choi JY, Kwon YS, Jung EJ, Yi BJ. SLAM in indoor pipelines with 15mm diameter. In: 2008 IEEE International Conference on Robotics and Automation; 2008 May 19-23; Pasadena, CA. IEEE; 2008. pp. 4005-11.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/