fig4

Soft conductive nanocomposites for recording biosignals on skin

Figure 4. Soft conductive nanocomposites based on metal nanofillers. (A) SEM images of the composite in a zigzag morphology (left) and electrical conductivity changes under repeated stretching (right). Reproduced with permission from ref[98]. Copyright 2011, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (B) Schematic of the wet spinning apparatus and image of a knitted fabric (left). Normalized resistance change as a function of tensile strain (right). Reproduced with permission from ref[99]. Copyright 2014, American Chemical Society; (C) Schematic of screen printing of a water-based AgNW ink and optical image of AgNW patterns (left). Conductivity variation of the conductive ink-based composite under stretching (right). Reproduced with permission from ref[100]. Copyright 2016, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (D) SEM image (left) and schematic of nanomesh conductor (middle). Resistance change under repeated stretching at 50% tensile strain (right). Reproduced with permission from ref[101]. Copyright 2019, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim; (E) Schematic of W-AuNS (left) and the conductivity against filler volume fraction (right). Reproduced with permission from ref[106]. Copyright 2022, American Chemical Society; (F) SEM image and backscattered electron (BSE) image of Ag-Au core-sheath nanowire (left) and ICP-MS analysis on Ag ions released (right). Reproduced with permission from ref[107]. Copyright 2018, The Author(s). AgNPs: silver nanoparticles; AgNW: silver nanowire; ICP-MS: inductively coupled plasma-mass spectrometry; PEG: polyethylene glycol; PU: polyurethane; SEM: scanning electron microscopy; TPU: thermoplastic polyurethane; W-AuNS: whiskered gold nanosheet.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/