REFERENCES

1. Zhou M, Qi Z, Xia Z, et al. Miniaturized soft centrifugal pumps with magnetic levitation for fluid handling. Sci Adv 2021;7:eabi7203.

2. Kim DC, Shim HJ, Lee W, Koo JH, Kim DH. Material-based approaches for the fabrication of stretchable electronics. Adv Mater 2020;32:e1902743.

3. Rus D, Tolley MT. Design, fabrication and control of soft robots. Nature 2015;521:467-75.

4. Wang C, Wang C, Huang Z, Xu S. Materials and structures toward soft electronics. Adv Mater 2018;30:e1801368.

5. Jung D, Lim C, Shim HJ, et al. Highly conductive and elastic nanomembrane for skin electronics. Science 2021;373:1022-6.

6. Zhao G, Ling Y, Su Y, et al. Laser-scribed conductive, photoactive transition metal oxide on soft elastomers for Janus on-skin electronics and soft actuators. Sci Adv 2022;8:eabp9734.

7. Wang B, Thukral A, Xie Z, et al. Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat Commun 2020;11:2405.

8. Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science 2010;327:1603-7.

9. Kim DH, Viventi J, Amsden JJ, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater 2010;9:511-7.

10. Song YM, Xie Y, Malyarchuk V, et al. Digital cameras with designs inspired by the arthropod eye. Nature 2013;497:95-9.

11. Guo CF, Liu Q, Wang G, et al. Fatigue-free, superstretchable, transparent, and biocompatible metal electrodes. Proc Natl Acad Sci U S A 2015;112:12332-7.

12. Cianchetti M, Laschi C, Menciassi A, Dario P. Biomedical applications of soft robotics. Nat Rev Mater 2018;3:143-53.

13. Maeder-york P, Clites T, Boggs E, et al. Biologically inspired soft robot for thumb rehabilitation1. J Med Devices 2014;8:020933.

14. Kwon K, Kim JU, Deng Y, et al. An on-skin platform for wireless monitoring of flow rate, cumulative loss and temperature of sweat in real time. Nat Electron 2021;4:302-12.

15. Wen DL, Deng HT, Liu X, Li GK, Zhang XR, Zhang XS. Wearable multi-sensing double-chain thermoelectric generator. Microsyst Nanoeng 2020;6:68.

16. Shin S, So H. Time-dependent motion of 3D-printed soft thermal actuators for switch application in electric circuits. Additive Manufacturing 2021;39:101893.

17. Shin S, Ko B, So H. Structural effects of 3D printing resolution on the gauge factor of microcrack-based strain gauges for health care monitoring. Microsyst Nanoeng 2022;8:12.

18. Kim DH, Lu N, Ma R, et al. Epidermal electronics. Science 2011;333:838-43.

19. Park SI, Brenner DS, Shin G, et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat Biotechnol 2015;33:1280-6.

20. Guo Y, Zhang X, Wang Y, et al. All-fiber hybrid piezoelectric-enhanced triboelectric nanogenerator for wearable gesture monitoring. Nano Energy 2018;48:152-60.

21. Trimmer B. Soft robots. Curr Biol 2013;23:R639-41.

22. Wang H, Totaro M, Beccai L. Toward perceptive soft robots: progress and challenges. Adv Sci (Weinh) 2018;5:1800541.

23. Breger JC, Yoon C, Xiao R, et al. Self-folding thermo-magnetically responsive soft microgrippers. ACS Appl Mater Interfaces 2015;7:3398-405.

24. Fusco S, Sakar MS, Kennedy S, et al. An integrated microrobotic platform for on-demand, targeted therapeutic interventions. Adv Mater 2014;26:952-7.

25. Eristoff S, Kim SY, Sanchez-Botero L, Buckner T, Yirmibeşoğlu OD, Kramer-Bottiglio R. Soft actuators made of discrete grains. Adv Mater 2022;34:e2109617.

26. Heiden A, Preninger D, Lehner L, et al. 3D printing of resilient biogels for omnidirectional and exteroceptive soft actuators. Sci Robot 2022;7:eabk2119.

27. Jang KI, Li K, Chung HU, et al. Self-assembled three dimensional network designs for soft electronics. Nat Commun 2017;8:15894.

28. Rich SI, Wood RJ, Majidi C. Untethered soft robotics. Nat Electron 2018;1:102-12.

29. Zhao H, Cheng X, Wu C, et al. Mechanically guided hierarchical assembly of 3D mesostructures. Adv Mater 2022;34:e2109416.

30. Service RF. Technology. Electronic textiles charge ahead. Science 2003;301:909-11.

31. Weng W, Chen P, He S, Sun X, Peng H. Smart electronic textiles. Angew Chem Int Ed Engl 2016;55:6140-69.

32. Wang X, Dong L, Zhang H, Yu R, Pan C, Wang ZL. Recent progress in electronic skin. Adv Sci (Weinh) 2015;2:1500169.

33. Liu X. The more and less of electronic-skin sensors. Science 2020;370:910-1.

34. Feiner R, Engel L, Fleischer S, et al. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. Nat Mater 2016;15:679-85.

35. Sitti M. Miniature soft robots — road to the clinic. Nat Rev Mater 2018;3:74-5.

36. Horvath MA, Wamala I, Rytkin E, et al. An intracardiac soft robotic device for augmentation of blood ejection from the failing right ventricle. Ann Biomed Eng 2017;45:2222-33.

37. Han M, Chen L, Aras K, et al. Catheter-integrated soft multilayer electronic arrays for multiplexed sensing and actuation during cardiac surgery. Nat Biomed Eng 2020;4:997-1009.

38. Kim Y, Parada GA, Liu S, Zhao X. Ferromagnetic soft continuum robots. Sci Robot 2019;4:eaax7329.

39. Zhao C, Ding L, Huangfu J, Zhang J, Yu G. Research progress in anisotropic magnetoresistance. Rare Met 2013;32:213-24.

40. Heidari H. Electronic skins with a global attraction. Nat Electron 2018;1:578-9.

41. Bermúdez GS, Fuchs H, Bischoff L, Fassbender J, Makarov D. Electronic-skin compasses for geomagnetic field-driven artificial magnetoreception and interactive electronics. Nat Electron 2018;1:589-95.

42. Fujiwara K, Oogane M, Kanno A, et al. Magnetocardiography and magnetoencephalography measurements at room temperature using tunnel magneto-resistance sensors. Appl Phys Express 2018;11:023001.

43. Wang M, Wang Y, Peng L, Ye C. Measurement of triaxial magnetocardiography using high sensitivity tunnel magnetoresistance sensor. IEEE Sensors J 2019;19:9610-5.

44. Caruso L, Wunderle T, Lewis CM, et al. In vivo magnetic recording of neuronal activity. Neuron 2017;95:1283-1291.e4.

45. Bermúdez GS, Makarov D. Magnetosensitive e-skins for interactive devices. Adv Funct Mater 2021;31:2007788.

46. Ge J, Wang X, Drack M, et al. A bimodal soft electronic skin for tactile and touchless interaction in real time. Nat Commun 2019;10:4405.

47. Melzer M, Makarov D, Calvimontes A, et al. Stretchable magnetoelectronics. Nano Lett 2011;11:2522-6.

48. Stuchly M, Dawson T. Interaction of low-frequency electric and magnetic fields with the human body. Proc IEEE 2000;88:643-64.

49. Tenforde T. Biological interactions of extremely-low-frequency electric and magnetic fields. Chem Interf Electrochem 1991;320:1-17.

50. Schenck JF. Physical interactions of static magnetic fields with living tissues. Prog Biophys Mol Biol 2005;87:185-204.

51. Zhang L, Abbott JJ, Dong L, Kratochvil BE, Bell D, Nelson BJ. Artificial bacterial flagella: Fabrication and magnetic control. Appl Phys Lett 2009;94:064107.

52. Luo Z, Dao TP, Hrabec A, et al. Chirally coupled nanomagnets. Science 2019;363:1435-9.

53. Cui J, Huang TY, Luo Z, et al. Nanomagnetic encoding of shape-morphing micromachines. Nature 2019;575:164-8.

54. Li C, Lau GC, Yuan H, et al. Fast and programmable locomotion of hydrogel-metal hybrids under light and magnetic fields. Sci Robot 2020;5:eabb9822.

55. Wu Y, Zhang S, Yang Y, Li Z, Wei Y, Ji Y. Locally controllable magnetic soft actuators with reprogrammable contraction-derived motions. Sci Adv 2022;8:eabo6021.

56. Cho KW, Sunwoo SH, Hong YJ, et al. Soft bioelectronics based on nanomaterials. Chem Rev 2022;122:5068-143.

57. Choi S, Lee H, Ghaffari R, Hyeon T, Kim DH. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 2016;28:4203-18.

58. Kim Y, Zhao X. Magnetic soft materials and robots. Chem Rev 2022;122:5317-64.

59. Gibertini M, Koperski M, Morpurgo AF, Novoselov KS. Magnetic 2D materials and heterostructures. Nat Nanotechnol 2019;14:408-19.

60. Wu S, Hu W, Ze Q, Sitti M, Zhao R. Multifunctional magnetic soft composites: a review. Multifunct Mater 2020;3:042003.

61. Murzin D, Mapps DJ, Levada K, et al. Ultrasensitive magnetic field sensors for biomedical applications. Sensors (Basel) 2020;20:1569.

62. Lin G, Makarov D, Schmidt OG. Magnetic sensing platform technologies for biomedical applications. Lab Chip 2017;17:1884-912.

63. Fagaly RL. Superconducting quantum interference device instruments and applications. Rev Sci Instrum 2006;77:101101.

64. Vasyukov D, Anahory Y, Embon L, et al. A scanning superconducting quantum interference device with single electron spin sensitivity. Nat Nanotechnol 2013;8:639-44.

65. Alexandrov EB. Recent progress in optically pumped magnetometers. Physica Scripta 2003;T105:27.

66. Tierney TM, Holmes N, Mellor S, et al. Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography. Neuroimage 2019;199:598-608.

67. Binasch G, Grünberg P, Saurenbach F, Zinn W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B Condens Matter 1989;39:4828-30.

68. Baibich MN, Broto JM, Fert A, et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett 1988;61:2472-5.

69. Thompson SM. The discovery, development and future of GMR: The Nobel Prize 2007. J Phys D: Appl Phys 2008;41:093001.

70. Berkowitz AE, Mitchell JR, Carey MJ, et al. Giant magnetoresistance in heterogeneous Cu-Co alloys. Phys Rev Lett 1992;68:3745-8.

71. Tsymbal E, Pettifor D. Perspectives of giant magnetoresistance. Solid State Phys :2001. pp. 113-237.

72. Naoe M, Miyamoto Y, Nakagawa S. Preparation of Ni–Fe/Cu multilayers with low coercivity and GMR effect by ion beam sputtering. J Appl Phys 1994;75:6525-7.

73. Wang L, Hu Z, Zhu Y, et al. Electric field-tunable giant magnetoresistance (GMR) sensor with enhanced linear range. ACS Appl Mater Interfaces 2020;12:8855-61.

74. Parkin SSP, K. P. Roche KPR, Takao Suzuki TS. Giant magnetoresistance in antiferromagnetic Co/Cu multilayers grown on Kapton. Jpn J Appl Phys 1992;31:L1246.

75. Melzer M, Lin G, Makarov D, Schmidt OG. Stretchable spin valves on elastomer membranes by predetermined periodic fracture and random wrinkling. Adv Mater 2012;24:6468-72.

76. Makarov D, Melzer M, Karnaushenko D, Schmidt OG. Shapeable magnetoelectronics. Appl Phys Rev 2016;3:011101.

77. Melzer M, Kaltenbrunner M, Makarov D, et al. Imperceptible magnetoelectronics. Nat Commun 2015;6:6080.

78. Hua Q, Sun J, Liu H, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat Commun 2018;9:244.

79. Karnaushenko D, Makarov D, Yan C, Streubel R, Schmidt OG. Printable giant magnetoresistive devices. Adv Mater 2012;24:4518-22.

80. Ha M, Cañón Bermúdez GS, Kosub T, et al. Printable and stretchable giant magnetoresistive sensors for highly compliant and skin-conformal electronics. Adv Mater 2021;33:e2005521.

81. Kondo M, Melzer M, Karnaushenko D, et al. Imperceptible magnetic sensor matrix system integrated with organic driver and amplifier circuits. Sci Adv 2020;6:eaay6094.

82. . Cañón Bermúdez GS, Makarov D. Geometrically curved magnetic field sensors for interactive electronics. In: Makarov D, Sheka DD, editors. Curvilinear micromagnetism. Cham: Springer International Publishing; 2022. pp. 375-401.

83. Becker C, Karnaushenko D, Kang T, et al. Self-assembly of highly sensitive 3D magnetic field vector angular encoders. Sci Adv 2019;5:eaay7459.

84. Melzer M, Karnaushenko D, Lin G, Baunack S, Makarov D, Schmidt OG. Direct transfer of magnetic sensor devices to elastomeric supports for stretchable electronics. Adv Mater 2015;27:1333-8.

85. Swastika P, Antarnusa G, Suharyadi E, Kato T, Iwata S. Biomolecule detection using wheatstone bridge giant magnetoresistance (GMR) sensors based on CoFeB spin-valve thin film. J Phys : Conf Ser 2018;1011:012060.

86. Cañón Bermúdez GS, Karnaushenko DD, Karnaushenko D, et al. Magnetosensitive e-skins with directional perception for augmented reality. Sci Adv 2018;4:eaao2623.

87. Becker C, Bao B, Karnaushenko DD, et al. A new dimension for magnetosensitive e-skins: active matrix integrated micro-origami sensor arrays. Nat Commun 2022;13:2121.

88. Maury P, Monteil B, Marty L, Duparc A, Mondoly P, Rollin A. Three-dimensional mapping in the electrophysiological laboratory. Arch Cardiovasc Dis 2018;111:456-64.

89. Rivkin B, Becker C, Singh B, et al. Electronically integrated microcatheters based on self-assembling polymer films. Sci Adv 2021;7:eabl5408.

90. Wang Z, Wang X, Li M, et al. Highly Sensitive flexible magnetic sensor based on anisotropic magnetoresistance effect. Adv Mater 2016;28:9370-7.

91. Oliveros Mata ES, Cañón Bermúdez GS, Ha M, et al. Printable anisotropic magnetoresistance sensors for highly compliant electronics. Appl Phys A 2021:127.

92. Guo Y, Deng Y, Wang SX. Multilayer anisotropic magnetoresistive angle sensor. Sens Actuator A Phys 2017;263:159-65.

93. Rittinger J, Taptimthong P, Jogschies L, Wurz MC, Rissing L. Impact of different polyimide-based substrates on the soft magnetic properties of NiFe thin films. Proc Spie 2015:9517.

94. Quynh LK, Tu BD, Anh CV, et al. Design optimization of an anisotropic magnetoresistance sensor for detection of magnetic nanoparticles. Journal of Elec Materi 2019;48:997-1004.

95. Chiolerio A, Allia P, Celasco E, Martino P, Spizzo F, Celegato F. Magnetoresistance anisotropy in a hexagonal lattice of Co antidots obtained by thermal evaporation. J Mag Magn Mater 2010;322:1409-12.

96. Rijks TG, Coehoorn R, de Jong MJ, de Jonge WJ. Semiclassical calculations of the anisotropic magnetoresistance of NiFe-based thin films, wires, and multilayers. Phys Rev B Condens Matter 1995;51:283-91.

97. Popovic RS, Drljaca PM, Schott C In Bridging the gap between AMR, GMR, and Hall magnetic sensors, 2002 23rd International Conference on Microelectronics. .

98. Michelena MD, Oelschlägel W, Arruego I, del Real RP, Mateos JAD, Merayo JM. Magnetic giant magnetoresistance commercial off the shelf for space applications. J Appl Phys 2008;103:07E912.

99. Grissom CB. Magnetic Field Effects in Biology: A Survey of Possible Mechanisms with Emphasis on Radical-Pair Recombination. Chem Rev 1995;95:3-24.

100. Djayaprawira DD, Tsunekawa K, Nagai M, et al. 230% room-temperature magnetoresistance in CoFeB∕MgO∕CoFeB magnetic tunnel junctions. Appl Phys Lett 2005;86:092502.

101. Ikeda S, Hayakawa J, Ashizawa Y, et al. Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeB∕MgO∕CoFeB pseudo-spin-valves annealed at high temperature. Appl Phys Lett 2008;93:082508.

102. Carlson A, Bowen AM, Huang Y, Nuzzo RG, Rogers JA. Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv Mater 2012;24:5284-318.

103. Chung H, Kim T, Kim H, et al. Fabrication of releasable single-crystal silicon-metal oxide field-effect devices and their deterministic assembly on foreign substrates. Adv Funct Mater 2011;21:3029-36.

104. Loong LM, Lee W, Qiu X, et al. Flexible mgo barrier magnetic tunnel junctions. Adv Mater 2016;28:4983-90.

105. Ota S, Ono M, Matsumoto H, et al. CoFeB/MgO-based magnetic tunnel junction directly formed on a flexible substrate. Appl Phys Express 2019;12:053001.

106. Ota S, Ando A, Sekitani T, Koyama T, Chiba D. Flexible CoFeB/MgO-based magnetic tunnel junctions annealed at high temperature (≥ 350 °C). Appl Phys Lett 2019;115:202401.

107. Saito K, Imai A, Ota S, Koyama T, Ando A, Chiba D. CoFeB/MgO-based magnetic tunnel junctions for film-type strain gauge. Appl Phys Lett 2022;120:072407.

108. Ribeiro P, Cardoso S, Bernardino A, Jamone L. Highly sensitive bio-inspired sensor for fine surface exploration and characterization. Ieee Int Conf Robot :2020. 625-631.

109. Ye C, Wang Y, Tao Y. High-density large-scale tmr sensor array for magnetic field imaging. IEEE Trans Instrum Meas 2019;68:2594-601.

110. Amaral J, Pinto V, Costa T, et al. Integration of TMR sensors in silicon microneedles for magnetic measurements of neurons. IEEE Trans Magn 2013;49:3512-5.

111. Wang SX, Bae S, Li G, et al. Towards a magnetic microarray for sensitive diagnostics. J Magn Magn Mater 2005;293:731-6.

112. Li D, Yao K, Gao Z, Liu Y, Yu X. Recent progress of skin-integrated electronics for intelligent sensing. Light: Advanced Manufacturing 2021;2:4.

113. Chen JY, Lau YC, Coey JM, Li M, Wang JP. High performance MgO-barrier magnetic tunnel junctions for flexible and wearable spintronic applications. Sci Rep 2017;7:42001.

114. Chow TS. The effect of particle shape on the mechanical properties of filled polymers. J Mater Sci 1980;15:1873-88.

115. Varga Z, Filipcsei G, Zrínyi M. Magnetic field sensitive functional elastomers with tuneable elastic modulus. Polymer 2006;47:227-33.

116. Diguet G, Sebald G, Nakano M, Lallart M, Cavaillé J. Magnetic particle chains embedded in elastic polymer matrix under pure transverse shear and energy conversion. J Magn Magn Mater 2019;481:39-49.

117. Diguet G, Sebald G, Nakano M, Lallart M, Cavaillé J. Optimization of magneto-rheological elastomers for energy harvesting applications. Smart Mater Struct 2020;29:075017.

118. Zhou Y, Zhao X, Xu J, et al. Giant magnetoelastic effect in soft systems for bioelectronics. Nat Mater 2021;20:1670-6.

119. Zhao X, Chen G, Zhou Y, et al. Giant magnetoelastic effect enabled stretchable sensor for self-powered biomonitoring. ACS Nano 2022;16:6013-22.

120. Li Y, Qi Z, Yang J, et al. Origami NdFeB flexible magnetic membranes with enhanced magnetism and programmable sequences of polarities. Adv Funct Mater 2019;29:1904977.

121. Zhao Y, Gao S, Zhang X, et al. Fully flexible electromagnetic vibration sensors with annular field confinement origami magnetic membranes. Adv Funct Mater 2020;30:2001553.

122. Yan Y, Hu Z, Yang Z, et al. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci Robot 2021;6:eabc8801.

123. Hellebrekers T, Kroemer O, Majidi C. Soft Magnetic skin for continuous deformation sensing. Adv Intell Syst 2019;1:1900025.

124. Wang H, de Boer G, Kow J, et al. Design methodology for magnetic field-based soft tri-axis tactile sensors. Sensors (Basel) 2016;16:1356.

125. Tomo TP, Regoli M, Schmitz A, et al. A new silicone structure for uskin—a soft, distributed, digital 3-axis skin sensor and its integration on the humanoid robot icub. IEEE Robot Autom Lett 2018;3:2584-91.

126. Theilade UA, Hansen HN. Surface microstructure replication in injection molding. Int J Adv Manuf Technol 2007;33:157-66.

127. Isaacoff BP, Brown KA. Progress in top-down control of bottom-up assembly. Nano Lett 2017;17:6508-10.

128. Alfadhel A, Kosel J. Magnetic nanocomposite cilia tactile sensor. Adv Mater 2015;27:7888-92.

129. Zhang X, Zheng C, Li Y, Wu Z, Huang X. Magnetically levitated flexible vibration sensors with surficial micropyramid arrays for magnetism enhancement. ACS Appl Mater Interfaces 2022;14:37916-25.

130. Câmara Santa Clara Gomes T, Abreu Araujo F, Piraux L. Making flexible spin caloritronic devices with interconnected nanowire networks. Sci Adv 2019;5:eaav2782.

131. Bharti B, Fameau AL, Rubinstein M, Velev OD. Nanocapillarity-mediated magnetic assembly of nanoparticles into ultraflexible filaments and reconfigurable networks. Nat Mater 2015;14:1104-9.

132. Fan X, Rong Y, Xu J, Liu W, Chen L, Huang Y. Study on HAZ of nanosecond UV laser cutting multilayer ferrite ceramic composite flakes for electromagnetic shielding. J Mater Sci: Mater Electron 2022;33:24354-66.

133. Jin Q, Yang Y, Jackson JA, Yoon C, Gracias DH. Untethered single cell grippers for active biopsy. Nano Lett 2020;20:5383-90.

134. Reddy AN, Maheshwari N, Sahu DK, Ananthasuresh GK. Miniature compliant grippers with vision-based force sensing. IEEE Trans Robot 2010;26:867-77.

135. Gultepe E, Randhawa JS, Kadam S, et al. Biopsy with thermally-responsive untethered microtools. Adv Mater 2013;25:514-9.

136. Cecchi R, Verotti M, Capata R, et al. Development of micro-grippers for tissue and cell manipulation with direct morphological comparison. Micromachines 2015;6:1710-28.

137. Liu W, Jia X, Wang F, Jia Z. An in-pipe wireless swimming microrobot driven by giant magnetostrictive thin film. Sens Actuator A Phys 2010;160:101-8.

138. Chen XZ, Hoop M, Shamsudhin N, et al. Hybrid magnetoelectric nanowires for nanorobotic applications: fabrication, magnetoelectric coupling, and magnetically assisted in vitro targeted drug delivery. Adv Mater 2017;29:1605458.

139. Hristoforou E, Ktena A. Magnetostriction and magnetostrictive materials for sensing applications. J Magn Magn Mater 2007;316:372-8.

140. Olabi A, Grunwald A. Design and application of magnetostrictive materials. Materials & Design 2008;29:469-83.

141. Atulasimha J, Flatau AB. A review of magnetostrictive iron–gallium alloys. Smart Mater Struct 2011;20:043001.

142. Spizzo F, Greco G, Del Bianco L, Coïsson M, Pugno NM. Magnetostrictive and Electroconductive Stress‐Sensitive Functional Spider Silk. Adv Funct Materials 2022;32:2207382.

143. Chakraverty S, Bandyopadhyay M. Coercivity of magnetic nanoparticles: a stochastic model. J Phys : Condens Matter 2007;19:216201.

144. Skomski R, Zhou J, Nanomagnetic Models. In Advanced Magnetic Nanostructures, Sellmyer D, Skomski R, Eds. Springer US: Boston, MA, 2006. pp 41-90.

145. Pishvar M, Amirkhosravi M, Altan MC. Magnet assisted composite manufacturing: A novel fabrication technique for high-quality composite laminates. Polym Compos 2019;40:159-69.

146. Wei X, Jin M, Yang H, Wang X, Long Y, Chen Z. Advances in 3D printing of magnetic materials: Fabrication, properties, and their applications. J Adv Ceram 2022;11:665-701.

147. Błyskun P, Kowalczyk M, Łukaszewicz G, Grabias A, Zackiewicz P, Kolano-burian A. Low-porosity soft magnetic mouldable composites. Materialia 2022;26:101602.

148. Ślusarek B, Przybylski M. Hard and soft magnetic composites with modified magnetic properties. World J. Eng 2011;8:87-92.

149. Zhang J, Guo Y, Hu W, Soon RH, Davidson ZS, Sitti M. Liquid crystal elastomer-based magnetic composite films for reconfigurable shape-morphing soft miniature machines. Adv Mater 2021;33:e2006191.

150. Coey J. Magnetic materials. J. Alloys Compd 2001;326:2-6.

151. Kim J, Chung SE, Choi SE, Lee H, Kim J, Kwon S. Programming magnetic anisotropy in polymeric microactuators. Nat Mater 2011;10:747-52.

152. Lum GZ, Ye Z, Dong X, et al. Shape-programmable magnetic soft matter. Proc Natl Acad Sci U S A 2016;113:E6007-15.

153. Hu W, Lum GZ, Mastrangeli M, Sitti M. Small-scale soft-bodied robot with multimodal locomotion. Nature 2018;554:81-5.

154. Dong Y, Wang L, Xia N, et al. Untethered small-scale magnetic soft robot with programmable magnetization and integrated multifunctional modules. Sci Adv 2022;8:eabn8932.

155. Cheng Y, Chan KH, Wang XQ, et al. Direct-ink-write 3D printing of hydrogels into biomimetic soft robots. ACS Nano 2019;13:13176-84.

156. Xue Z, Jin T, Xu S, et al. Assembly of complex 3D structures and electronics on curved surfaces. Sci Adv 2022;8:eabm6922.

157. Cheng X, Zhang Y. Micro/Nanoscale 3D assembly by rolling, folding, curving, and buckling approaches. Adv Mater 2019;31:e1901895.

158. Miao L, Song Y, Ren Z, et al. 3D temporary-magnetized soft robotic structures for enhanced energy harvesting. Adv Mater 2021;33:e2102691.

159. Yang Q, Liu T, Xue Y, et al. Ecoresorbable and bioresorbable microelectromechanical systems. Nat Electron 2022;5:526-38.

160. Kim Y, Yuk H, Zhao R, Chester SA, Zhao X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 2018;558:274-9.

161. Ze Q, Wu S, Nishikawa J, et al. Soft robotic origami crawler. Sci Adv 2022;8:eabm7834.

162. Li Z, Kidambi N, Wang L, Wang K. Uncovering rotational multifunctionalities of coupled Kresling modular structures. Extreme Mech Lett 2020;39:100795.

163. Kaufmann J, Bhovad P, Li S. Harnessing the multistability of kresling origami for reconfigurable articulation in soft robotic arms. Soft Robot 2022;9:212-23.

164. Alapan Y, Karacakol AC, Guzelhan SN, Isik I, Sitti M. Reprogrammable shape morphing of magnetic soft machines. Sci Adv 2020:6.

165. Tang J, Sun B. Reprogrammable shape transformation of magnetic soft robots enabled by magnetothermal effect. Appl Phys Lett 2022;120:244101.

166. Tang Z, Xu Z, Bo X, et al. Magnetically controlled flexible micro-robots based on magnetic particle arrangement. Mater Adv 2023;4:1314-25.

167. Schmauch MM, Mishra SR, Evans BA, Velev OD, Tracy JB. Chained iron microparticles for directionally controlled actuation of soft robots. ACS Appl Mater Interfaces 2017;9:11895-901.

168. Bayaniahangar R, Bayani Ahangar S, Zhang Z, Lee BP, Pearce JM. 3-D printed soft magnetic helical coil actuators of iron oxide embedded polydimethylsiloxane. Sens Actuators B Chem 2021;326:128781.

169. Maria-Hormigos R, Mayorga-Martinez CC, Pumera M. Soft magnetic microrobots for photoactive pollutant removal. Small Methods 2023;7:e2201014.

170. Tan R, Yang X, Lu H, et al. Nanofiber-based biodegradable millirobot with controllable anchoring and adaptive stepwise release functions. Matter 2022;5:1277-95.

171. Lu H, Zhang M, Yang Y, et al. A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nat Commun 2018;9:3944.

172. Li M, Ostrovsky-snider NA, Sitti M, Omenetto FG. Cutting the cord: progress in untethered soft robotics and actuators. MRS Advances 2019;4:2787-804.

173. Sitti M, Wiersma DS. Pros and cons: magnetic versus optical microrobots. Adv Mater 2020;32:e1906766.

174. Li L, Xin C, Hu Y, et al. On-demand maneuver of millirobots with reprogrammable motility by a hard-magnetic coating. ACS Appl Mater Interfaces 2022;14:52370-8.

175. Zhao R, Dai H, Yao H, Shi Y, Zhou G. Shape programmable magnetic pixel soft robot. Heliyon 2022;8:e11415.

176. Li H, Go G, Ko SY, Park J, Park S. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Mater Struct 2016;25:027001.

177. Goudu SR, Yasa IC, Hu X, Ceylan H, Hu W, Sitti M. Biodegradable untethered magnetic hydrogel milli‐grippers. Adv Funct Mater 2020;30:2004975.

178. Ze Q, Kuang X, Wu S, et al. Magnetic shape memory polymers with integrated multifunctional shape manipulation. Adv Mater 2020;32:e1906657.

179. Zhao Y, Hua M, Yan Y, Wu S, Alsaid Y, He X. Stimuli-responsive polymers for soft robotics. Annu Rev Control Robot Auton Syst 2022;5:515-45.

180. Zhang S, Ke X, Jiang Q, Ding H, Wu Z. Programmable and reprocessable multifunctional elastomeric sheets for soft origami robots. Sci Robot 2021;6:eabd6107.

181. Magdanz V, Khalil ISM, Simmchen J, et al. IRONSperm: Sperm-templated soft magnetic microrobots. Sci Adv 2020;6:eaba5855.

182. Liu Z, Li M, Dong X, Ren Z, Hu W, Sitti M. Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing. Nat Commun 2022;13:2016.

183. Ermolli M, Menné C, Pozzi G, Serra MA, Clerici LA. Nickel, cobalt and chromium-induced cytotoxicity and intracellular accumulation in human hacat keratinocytes. Toxicology 2001;159:23-31.

184. Lü X, Bao X, Huang Y, Qu Y, Lu H, Lu Z. Mechanisms of cytotoxicity of nickel ions based on gene expression profiles. Biomaterials 2009;30:141-8.

185. Ahamed M. Toxic response of nickel nanoparticles in human lung epithelial A549 cells. Toxicol In Vitro 2011;25:930-6.

186. Magaye R, Zhao J, Bowman L, Ding M. Genotoxicity and carcinogenicity of cobalt-, nickel- and copper-based nanoparticles. Exp Ther Med 2012;4:551-61.

187. Cabot A, Puntes VF, Shevchenko E, et al. Vacancy coalescence during oxidation of iron nanoparticles. J Am Chem Soc 2007;129:10358-60.

188. Sun YP, Li XQ, Cao J, Zhang WX, Wang HP. Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 2006;120:47-56.

189. Kadiri VM, Bussi C, Holle AW, et al. Biocompatible Magnetic Micro- and Nanodevices: Fabrication of FePt Nanopropellers and Cell Transfection. Adv Mater 2020;32:e2001114.

190. Rafsanjani A, Bertoldi K, Studart AR. Programming soft robots with flexible mechanical metamaterials. Sci Robot 2019;4:eaav7874.

191. Han M, Guo X, Chen X, et al. Submillimeter-scale multimaterial terrestrial robots. Sci Robot 2022;7:eabn0602.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/