REFERENCES

1. Iqbal SMA, Mahgoub I, Du E, Leavitt MA, Asghar W. Advances in healthcare wearable devices. NPJ Flex Electron 2021:5.

2. Cheng Y, Wang K, Xu H, Li T, Jin Q, Cui D. Recent developments in sensors for wearable device applications. Anal Bioanal Chem 2021;413:6037-57.

3. Wu M, Luo J. Wearable technology applications in healthcare: a literature review. Available from: https://www.himss.org/resources/wearable-technology-applications-healthcare-literature-review [Last accessed on 13 Apr 2023].

4. Yapici MK, Alkhidir TE. Intelligent medical garments with graphene-functionalized smart-cloth ECG sensors. Sensors 2017;17:875.

5. Arquilla K, Webb AK, Anderson AP. Textile electrocardiogram (ECG) electrodes for wearable health monitoring. Sensors 2020;20:1013.

6. Beniczky S, Conradsen I, Henning O, Fabricius M, Wolf P. Automated real-time detection of tonic-clonic seizures using a wearable EMG device. Neurology 2018;90:e428-34.

7. Zhou Z, Chen K, Li X, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron 2020;3:571-8.

8. Cai J, Lv C, Aoyagi E, Ogawa S, Watanabe A. Laser direct writing of a high-performance all-graphene humidity sensor working in a novel sensing mode for portable electronics. ACS Appl Mater Interf 2018;10:23987-96.

9. Liu G, Tan Q, Kou H, et al. A flexible temperature sensor based on reduced graphene oxide for robot skin used in internet of things. Sensors 2018;18:1400.

10. Alonso E, Shin DW, Rajan G, Neves AIS, Russo S, Craciun MF. Water-based solution processing and wafer-scale integration of all-graphene humidity sensors. Adv Sci 2019;6:1802318.

11. Nicholls B, Ang CS, Kanjo E, et al. An EMG-based eating behaviour monitoring system with haptic feedback to promote mindful eating. Comput Biol Med 2022;149:106068.

12. Wang C, Xia K, Wang H, Liang X, Yin Z, Zhang Y. Advanced carbon for flexible and wearable electronics. Adv Mater 2019;31:e1801072.

13. Pang C, Lee C, Suh K. Recent advances in flexible sensors for wearable and implantable devices: review. J Appl Polym Sci 2013;130:1429-41.

14. Gao M, Yao Y, Wang Y, et al. Wearable power management system enables uninterrupted battery-free data-intensive sensing and transmission. Nano Energy 2023;107:108107.

15. Lin Y, Chen X, Lu Q, et al. Thermally laminated lighting textile for wearable displays with high durability. ACS Appl Mater Interf 2023;15:5931-41.

16. Sharifuzzaman M, Zahed MA, Reza MS, et al. MXene/fluoropolymer-derived laser-carbonaceous all-fibrous nanohybrid patch for soft wearable bioelectronics. Adv Funct Mater ; doi: 10.1002/adfm.202208894.

17. Xu P, Wang S, Lin A, et al. Conductive and elastic bottlebrush elastomers for ultrasoft electronics. Nat Commun 2023;14:623.

18. Sang M, Kang K, Zhang Y, et al. ultrahigh sensitive au-doped silicon nanomembrane based wearable sensor arrays for continuous skin temperature monitoring with high precision. Adv Mater 2022;34:e2105865.

19. Wong TH, Liu Y, Li J, et al. Triboelectric nanogenerator tattoos enabled by epidermal electronic technologies. Adv Funct Mater 2022;32:2111269.

20. Park S, Ban S, Zavanelli N, et al. Fully screen-printed PI/PEG blends enabled patternable electrodes for scalable manufacturing of skin-conformal, stretchable, wearable electronics. ACS Appl Mater Interf 2023;15:2092-103.

21. Ban S, Lee YJ, Kwon S, et al. Soft wireless headband bioelectronics and electrooculography for persistent human-machine interfaces. ACS Appl Electron Mater 2023;5:877-86.

22. Lozano Montero K, Laurila M, Peltokangas M, et al. Self-powered, ultrathin, and transparent printed pressure sensor for biosignal monitoring. ACS Appl Electron Mater 2021;3:4362-75.

23. Yu Y, Li J, Solomon SA, et al. All-printed soft human-machine interface for robotic physicochemical sensing. Sci Robot 2022;7:eabn0495.

24. Park KT, Cho YS, Jeong I, et al. Highly integrated, wearable carbon-nanotube-yarn-based thermoelectric generators achieved by selective inkjet-printed chemical doping. Adv Energy Mater 2022;12:2200256.

25. Li W, Xu M, Gao J, et al. Large-scale ultra-robust MoS2 patterns directly synthesized on polymer substrate for flexible sensing electronics. Adv Mater 2023;35:e2207447.

26. Galliani M, Ferrari LM, Bouet G, Eglin D, Ismailova E. Tailoring inkjet-printed PEDOT: PSS composition toward green, wearable device fabrication. APL Bioeng 2023;7:016101.

27. Karlsbad A, Kopp S. Intramuscular and skin surface temperatures of the resting human superficial masseter muscle. Acta Odontol Scand 1991;49:225-31.

28. Liu Y, Hou S, Wang X, et al. Passive radiative cooling enables improved performance in wearable thermoelectric generators. Small 2022;18:e2106875.

29. Kim T, Hyun Lee S, Li Y, et al. Temperature- and size-dependent characteristics in ultrathin inorganic light-emitting diodes assembled by transfer printing. Appl Phys Lett 2014;104:051901.

30. Chiesa ST, Trangmar SJ, Kalsi KK, et al. Local temperature-sensitive mechanisms are important mediators of limb tissue hyperemia in the heat-stressed human at rest and during small muscle mass exercise. Am J Physiol Heart Circ Physiol 2015;309:H369-80.

31. Zhao C, Wang Y, Gao L, et al. High-performance liquid metal/polyborosiloxane elastomer toward thermally conductive applications. ACS Appl Mater Interf 2022;14:21564-76.

32. Zhang Q, Wang Y, Zhang X, et al. Self-healing, elastic and deformable novel composite phase change polymer based on thermoplastic elastomer SEBS for wearable devices. J Mater Sci 2022;57:7208-24.

33. Yang W, Xiao P, Ni F, et al. Biomass-derived nanostructured coatings based on cellulose nanofibers-melanin hybrids toward solar-enabled multifunctional energy management. Nano Energy 2022;97:107180.

34. Li L, Feng S, Bai Y, et al. Enhancing hydrovoltaic power generation through heat conduction effects. Nat Commun 2022;13:1043.

35. Jung Y, Choi J, Yoon Y, Park H, Lee J, Ko SH. Soft multi-modal thermoelectric skin for dual functionality of underwater energy harvesting and thermoregulation. Nano Energy 2022;95:107002.

36. Ren W, Sun Y, Zhao D, et al. High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities. Sci Adv 2021:7.

37. Luo H, Zhu Y, Xu Z, et al. Outdoor personal thermal management with simultaneous electricity generation. Nano Lett 2021;21:3879-86.

38. Kou Y, Sun K, Luo J, et al. An intrinsically flexible phase change film for wearable thermal managements. Energy Stor Mater 2021;34:508-14.

39. Gao S, Bai X, Li J, et al. Facile fabrication of large-area BN films for thermal management in flexible electronics. Compos Commun 2022;36:101392.

40. Hong H, Jung YH, Lee JS, et al. Anisotropic thermal conductive composite by the guided assembly of boron nitride nanosheets for flexible and stretchable electronics. Adv Funct Mater 2019;29:1902575.

41. Chen J, Huang X, Sun B, Jiang P. Highly thermally conductive yet electrically insulating polymer/boron nitride nanosheets nanocomposite films for improved thermal management capability. ACS Nano 2019;13:337-45.

42. Kang MH, Lee GJ, Lee JH, et al. Outdoor-useable, wireless/battery-free patch-type tissue oximeter with radiative cooling. Adv Sci 2021;8:2004885.

43. Byun SH, Yun JH, Heo SY, et al. Self-cooling gallium-based transformative electronics with a radiative cooler for reliable stiffness tuning in outdoor use. Adv Sci 2022;9:e2202549.

44. Xiao C, Zhang G, Li Z, Yang X. Custom design of solid-solid phase change material with ultra-high thermal stability for battery thermal management. J Mater Chem A 2020;8:14624-33.

45. Okabe T, Fujimura T, Okajima J, Aiba S, Maruyama S. Non-invasive measurement of effective thermal conductivity of human skin with a guard-heated thermistor probe. Int J Heat Mass Transf 2018;126:625-35.

46. Jung HH, Song J, Nie S, et al. Thin metallic heat sink for interfacial thermal management in biointegrated optoelectronic devices. Adv Mater Technol 2018;3:1800159.

47. Yang X, Yi J, Wang T, et al. Wet-adhesive on-skin sensors based on metal-organic frameworks for wireless monitoring of metabolites in sweat. Adv Mater 2022;34:e2201768.

48. Bandhauer TM, Garimella S, Fuller TF. A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc 2011;158:R1.

49. Liu Z, Tang A, Shan C, Yuan X, Li J. Assessing the impact of current control on the thermal management performance of thermoelectric cooling systems. Int J Energy Res 2021;45:7256-69.

50. Xu H, Guo Y, Wu B, et al. Highly integrable thermoelectric fiber. ACS Appl Mater Interf 2020;12:33297-304.

51. Lee SM, Byeon HJ, Lee JH, et al. Self-adhesive epidermal carbon nanotube electronics for tether-free long-term continuous recording of biosignals. Sci Rep 2014;4:6074.

52. Yamamoto Y, Yamamoto D, Takada M, et al. Efficient skin temperature sensor and stable gel-less sticky ECG sensor for a wearable flexible healthcare patch. Adv Healthc Mater 2017;6:1700495.

53. Chung HU, Kim BH, Lee JY, et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 2019:363.

54. Alizadeh Meghrazi M, Tian Y, Mahnam A, et al. Multichannel ECG recording from waist using textile sensors. Biomed Eng Online 2020;19:48.

55. Jinkins KR, Li S, Arafa H, et al. Thermally switchable, crystallizable oil and silicone composite adhesives for skin-interfaced wearable devices. Sci Adv 2022;8:eabo0537.

56. Kim YS, Kim J, Chicas R, et al. Soft wireless bioelectronics designed for real-time, continuous health monitoring of farmworkers. Adv Healthc Mater 2022;11:e2200170.

57. Kabiri Ameri S, Ho R, Jang H, et al. Graphene electronic tattoo sensors. ACS Nano 2017;11:7634-41.

58. Miyamoto A, Lee S, Cooray NF, et al. Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat Nanotechnol 2017;12:907-13.

59. Pino EJ, Arias Y, Aqueveque P. Wearable EMG shirt for upper limb training. Annu Int Conf IEEE Eng Med Biol Soc 2018;2018:4406-9.

60. Peng Y, Li W, Liu B, et al. Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat Commun 2021;12:6122.

61. Schreiner C, Catherwood P, Anderson J, McLaughlin J. Blood oxygen level measurement with a chest-based pulse oximetry prototype system. Available from: https://ieeexplore.ieee.org/abstract/document/5738028/references#references [Last accessed on 13 Apr 2023].

62. Yokota T, Zalar P, Kaltenbrunner M, et al. Ultraflexible organic photonic skin. Sci Adv 2016;2:e1501856.

63. Kim J, Gutruf P, Chiarelli AM, et al. Miniaturized battery-free wireless systems for wearable pulse oximetry. Adv Funct Mater 2017;27:1604373.

64. Xu H, Liu J, Zhang J, Zhou G, Luo N, Zhao N. Flexible organic/inorganic hybrid near-infrared photoplethysmogram sensor for cardiovascular monitoring. Adv Mater 2017;29:1700975.

65. Kang MH, Lee GJ, Yun JH, Song YM. NFC-based wearable optoelectronics working with smartphone application for untact healthcare. Sensors 2021;21:878.

66. Webb RC, Bonifas AP, Behnaz A, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater 2013;12:938-44.

67. Dankoco M, Tesfay G, Benevent E, Bendahan M. Temperature sensor realized by inkjet printing process on flexible substrate. Mater Sci Eng B 2016;205:1-5.

68. Wu J, Wu Z, Xu H, et al. An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Mater Horiz 2019;6:595-603.

69. Lan L, Le X, Dong H, Xie J, Ying Y, Ping J. One-step and large-scale fabrication of flexible and wearable humidity sensor based on laser-induced graphene for real-time tracking of plant transpiration at bio-interface. Biosens Bioelectron 2020;165:112360.

70. Lu Y, Xu K, Zhang L, et al. Multimodal plant healthcare flexible sensor system. ACS Nano 2020;14:10966-75.

71. Soni M, Bhattacharjee M, Ntagios M, Dahiya R. Printed temperature sensor based on PEDOT: PSS-graphene oxide composite. IEEE Sensors J 2020;20:7525-31.

72. Wang YF, Sekine T, Takeda Y, et al. Fully printed PEDOT: PSS-based temperature sensor with high humidity stability for wireless healthcare monitoring. Sci Rep 2020;10:2467.

73. Pi C, Yu X, Chen W, et al. A reversible and fast-responsive humidity sensor based on a lead-free Cs2TeCl6 double perovskite. Mater Adv 2021;2:1043-9.

74. Villarejo MV, Zapirain BG, Zorrilla AM. A stress sensor based on Galvanic Skin Response (GSR) controlled by ZigBee. Sensors 2012;12:6075-101.

75. Kurniawan H, Maslov AV, Pechenizkiy M. .

76. Seoane F, Mohino-Herranz I, Ferreira J, et al. Wearable biomedical measurement systems for assessment of mental stress of combatants in real time. Sensors 2014;14:7120-41.

77. Kim H, Kim YS, Mahmood M, et al. Fully integrated, stretchable, wireless skin-conformal bioelectronics for continuous stress monitoring in daily life. Adv Sci 2020;7:2000810.

78. Koh A, Kang D, Xue Y, et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat. Sci Transl Med 2016;8:366ra165.

79. Choi J, Kang D, Han S, Kim SB, Rogers JA. Thin, soft, skin-mounted microfluidic networks with capillary bursting valves for chrono-sampling of sweat. Adv Healthc Mater 2017;6:1601355.

80. Ardalan S, Hosseinifard M, Vosough M, Golmohammadi H. Towards smart personalized perspiration analysis: an IoT-integrated cellulose-based microfluidic wearable patch for smartphone fluorimetric multi-sensing of sweat biomarkers. Biosens Bioelectron 2020;168:112450.

81. Baker LB, Model JB, Barnes KA, et al. Skin-interfaced microfluidic system with personalized sweating rate and sweat chloride analytics for sports science applications. Sci Adv 2020:6.

82. Li S, Ma Z, Cao Z, Pan L, Shi Y. Advanced wearable microfluidic sensors for healthcare monitoring. Small 2020;16:e1903822.

83. Padash M, Enz C, Carrara S. Microfluidics by additive manufacturing for wearable biosensors: a review. Sensors 2020;20:4236.

84. Song Y, Min J, Yu Y, et al. Wireless battery-free wearable sweat sensor powered by human motion. Sci Adv 2020:6.

85. Smith DS, Alzina A, Bourret J, et al. Thermal conductivity of porous materials. J Mater Res 2013;28:2260-72.

86. Zhang X, Chao X, Lou L, et al. Personal thermal management by thermally conductive composites: a review. Compos Commun 2021;23:100595.

87. Pola T, Häkkinen T, Hännikäinen J, Vanhala J. Thermal performance analysis of 13 heat sink materials suitable for wearable electronics applications. Sci Technol 2013;3:67-73.

88. Candadai AA, Nadler EJ, Burke JS, Weibel JA, Marconnet AM. Thermal and mechanical characterization of high performance polymer fabrics for applications in wearable devices. Sci Rep 2021;11:8705.

89. Hardy JD, Dubois EF. Regulation of heat loss from the human body. Proc Natl Acad Sci USA 1937;23:624-31.

90. Voelker C, Hoffmann S, Kornadt O, Arens E, Zhang H, Huizenga C. Heat and moisture transfer through clothing. Available from: https://escholarship.org/uc/item/8qk6h840 [Last accessed on 13 Apr 2023].

91. Ko JH, Kim DH, Hong SH, Kim SK, Song YM. Polarization-driven thermal emission regulator based on self-aligned GST nanocolumns. iScience 2023;26:105780.

92. Seo DH, Heo S, Kim DH, Song YM, Lee GJ. Spatially-segmented colored radiative cooler with angle-robustness. IEEE Photonics J 2022;14:1-6.

93. Kim DH, Lee GJ, Heo SY, et al. Ultra-thin and near-unity selective emitter for efficient cooling. Opt Express 2021;29:31364-75.

94. Kim DH, Lee GJ, Heo S, Kang I, Song YM. Thermostat property of Janus emitter in enclosures. Solar Energy Mater Solar Cells 2021;230:111173.

95. Raman AP, Anoma MA, Zhu L, Rephaeli E, Fan S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014;515:540-4.

96. Yazdi M, Sheikhzadeh M. Personal cooling garments: a review. J Text Inst 2014;105:1231-50.

97. GJ, Heo S-Y, Kang I-S, Song YM. Thermostat property of Janus emitter in enclosures. Sol Energy Mater Sol Cells 2021;230:111173.

98. Xu L, Sun D, Tian Y, Fan T, Zhu Z. Nanocomposite hydrogel for daytime passive cooling enabled by combined effects of radiative and evaporative cooling. Chem Eng J 2023;457:141231.

99. Congalton D. Shape memory alloys for use in thermally activated clothing, protection against flame and heat. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1099-1018(199909/10)23:5%3C223::AID-FAM687%3E3.0.CO;2-K [Last accessed on 13 Apr 2023].

100. Shimazaki Y, Katsuta S. Spatiotemporal sweat evaporation and evaporative cooling in thermal environments determined from wearable sensors. Appl Therm Eng 2019;163:114422.

101. Mondal S. Phase change materials for smart textiles - an overview. Appl Therm Eng 2008;28:1536-50.

102. Shi Y, Ji J, Yin Y, Li Y, Xing Y. Analytical transient phase change heat transfer model of wearable electronics with a thermal protection substrate. Appl Math Mech Engl Ed 2020;41:1599-610.

103. Liu P, Gao H, Chen X, et al. In situ one-step construction of monolithic silica aerogel-based composite phase change materials for thermal protection. Compos Part B Eng 2020;195:108072.

104. Chen W, Shi X, Zou J, Chen Z. Wearable fiber-based thermoelectrics from materials to applications. Nano Energy 2021;81:105684.

105. Selvam C, Manikandan S, Krishna NV, Lamba R, Kaushik S, Mahian O. Enhanced thermal performance of a thermoelectric generator with phase change materials. Int Commun Heat Mass Transf 2020;114:104561.

106. Zaferani SH, Sams MW, Ghomashchi R, Chen Z. Thermoelectric coolers as thermal management systems for medical applications: design, optimization, and advancement. Nano Energy 2021;90:106572.

107. Bahru R, Hamzah AA, Mohamed MA. Thermal management of wearable and implantable electronic healthcare devices: perspective and measurement approach. Int J Energy Res 2021;45:1517-34.

108. Edwards RH, Harris RC, Hultman E, Kaijser L, Koh D, Nordesjö LO. Effect of temperature on muscle energy metabolism and endurance during successive isometric contractions, sustained to fatigue, of the quadriceps muscle in man. J Physiol 1972;220:335-52.

109. Heinonen I, Brothers RM, Kemppainen J, Knuuti J, Kalliokoski KK, Crandall CG. Local heating, but not indirect whole body heating, increases human skeletal muscle blood flow. J Appl Physiol 2011;111:818-24.

110. Xu Y, Kraemer D, Song B, et al. Nanostructured polymer films with metal-like thermal conductivity. Nat Commun 2019;10:1771.

111. Han Z, Fina A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 2011;36:914-44.

112. Kang SJ, Hong H, Jeong C, et al. Avoiding heating interference and guided thermal conduction in stretchable devices using thermal conductive composite islands. Nano Res 2021;14:3253-9.

113. Gao T, Yang Z, Chen C, et al. Three-dimensional printed thermal regulation textiles. ACS Nano 2017;11:11513-20.

114. Yu X, Li Y, Wang X, Si Y, Yu J, Ding B. Thermoconductive, moisture-permeable, and superhydrophobic nanofibrous membranes with interpenetrated boron nitride network for personal cooling fabrics. ACS Appl Mater Interf 2020;12:32078-89.

115. Tan C, Dong Z, Li Y, et al. A high performance wearable strain sensor with advanced thermal management for motion monitoring. Nat Commun 2020;11:3530.

116. Heo S, Lee GJ, Song YM. Heat-shedding with photonic structures: radiative cooling and its potential. J Mater Chem C 2022;10:9915-37.

117. Lee GJ, Kim YJ, Kim HM, Yoo YJ, Song YM. Colored, daytime radiative coolers with thin-film resonators for aesthetic purposes. Adv Opt Mater 2018;6:1800707.

118. Xu Y, Sun B, Ling Y, et al. Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proc Natl Acad Sci USA 2020;117:205-13.

119. Tang KM, Chau KH, Kan CW, Fan JT. Assessing the accumulated stickiness magnitude from fabric-skin friction: effect of wetness level of various fabrics. R Soc Open Sci 2018;5:180860.

120. Peng Y, Li W, Liu B, et al. Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nat Commun 2021;12:6122.

121. Zhou Y, Zhang T, Wang F, Yu Y. Performance analysis of a novel thermoelectric assisted indirect evaporative cooling system. Energy 2018;162:299-308.

122. Chen Y, Qiu F, Yang D, Li Y, Liang H, Zhang T. Multifunctional hybrid membranes with enhanced heat dissipation and sweat transportation for wearable applications. ACS Appl Energy Mater 2022;5:11892-9.

123. Zhang X, Yang W, Shao Z, et al. A moisture-wicking passive radiative cooling hierarchical metafabric. ACS Nano 2022;16:2188-97.

124. Wang C, Hua L, Yan H, Li B, Tu Y, Wang R. A thermal management strategy for electronic devices based on moisture sorption-desorption processes. Joule 2020;4:435-47.

125. Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005;309:2040-2.

126. Zhang Z, Wang X, Yan Y. A review of the state-of-the-art in electronic cooling. e-Prime Adv Electr Eng Electron Energy 2021;1:100009.

127. Yang L, Feng C, Bai L, et al. Flexible shape-stabilized phase change materials with passive radiative cooling capability for thermal management. Chem Eng J 2021;425:131466.

128. Zhao X, Zou D, Wang S. Flexible phase change materials: preparation, properties and application. Chem Eng J 2022;431:134231.

129. Nie S, Cai M, Yang H, et al. Soft, stretchable thermal protective substrates for wearable electronics. NPJ Flex Electron 2022:6.

130. Shi Y, Wang C, Yin Y, Li Y, Xing Y, Song J. Functional soft composites as thermal protecting substrates for wearable electronics. Adv Funct Mater 2019;29:1905470.

131. Jung Y, Ha I, Kim M, Ahn J, Lee J, Ko SH. High heat storing and thermally diffusive artificial skin for wearable thermal management. Nano Energy 2023;105:107979.

132. Sun N, Li X. A flexible composite phase change material with ultrahigh stretchability for thermal management in wearable electronics. J Mater Sci 2021;56:15937-49.

133. Choi J, Dun C, Forsythe C, Gordon MP, Urban JJ. Lightweight wearable thermoelectric cooler with rationally designed flexible heatsink consisting of phase-change material/graphite/silicone elastomer. J Mater Chem A 2021;9:15696-703.

134. Sun W, Liu W, Liu Q, Chen Z. Advances in thermoelectric devices for localized cooling. Chem Eng J 2022;450:138389.

135. Kishore RA, Nozariasbmarz A, Poudel B, Sanghadasa M, Priya S. Ultra-high performance wearable thermoelectric coolers with less materials. Nat Commun 2019;10:1765.

136. Hong S, Gu Y, Seo JK, et al. Wearable thermoelectrics for personalized thermoregulation. Sci Adv 2019;5:eaaw0536.

137. Zhang T, Li K, Zhang J, et al. High-performance, flexible, and ultralong crystalline thermoelectric fibers. Nano Energy 2017;41:35-42.

138. Lee J, Sul H, Lee W, et al. Stretchable skin-like cooling/heating device for reconstruction of artificial thermal sensation in virtual reality. Adv Funct Mater 2020;30:1909171.

139. Han WB, Heo SY, Kim D, et al. Zebra-inspired stretchable, biodegradable radiation modulator for all-day sustainable energy harvesters. Sci Adv 2023;9:eadf5883.

140. Ju YS. Thermal management and control of wearable devices. iScience 2022;25:104587.

141. Jeong H, Wang L, Ha T, et al. Modular and reconfigurable wireless E-tattoos for personalized sensing. Adv Mater Technol 2019;4:1900117.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/