REFERENCES

1. Dargahi J, Najarian S. Human tactile perception as a standard for artificial tactile sensing - a review. Int J Med Robot Comput Assist Surg 2004;1:23-5.

2. Lee Y, Park J, Choe A, Cho S, Kim J, Ko H. Mimicking human and biological skins for multifunctional skin electronics. Adv Funct Mater 2020;30:1904523.

3. Navarro SE, Muhlbacher-karrer S, Alagi H, et al. Proximity perception in human-centered robotics: a survey on sensing systems and applications. IEEE Trans Robot 2022;38:1599-620.

4. Gao Y, Yu L, Yeo JC, Lim CT. Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv Mater 2020;32:e1902133.

5. Romeo RA, Zollo L. Methods and sensors for slip detection in robotics: a survey. IEEE Access 2020;8:73027-50.

6. Yamaguchi A, Atkeson CG. Recent progress in tactile sensing and sensors for robotic manipulation: can we turn tactile sensing into vision? Adv Robot 2019;33:661-73.

7. Luo S, Bimbo J, Dahiya R, Liu H. Robotic tactile perception of object properties: a review. Mechatronics 2017;48:54-67.

8. Sun Z, Zhu M, Shan X, Lee C. Augmented tactile-perception and haptic-feedback rings as human-machine interfaces aiming for immersive interactions. Nat Commun 2022;13:5224.

9. Pyo S, Lee J, Bae K, Sim S, Kim J. Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv Mater 2021;33:e2005902.

10. Nie B, Geng J, Yao T, et al. Sensing arbitrary contact forces with a flexible porous dielectric elastomer. Mater Horiz 2021;8:962-71.

11. Duan Y, He S, Wu J, Su B, Wang Y. Recent progress in flexible pressure sensor arrays. Nanomaterials 2022;12:2495.

12. Duan S, Shi Q, Wu J. Multimodal sensors and ML-based data fusion for advanced robots. Adv Intell Syst 2022;4:2200213.

13. Yuan Z, Han S, Gao W, Pan C. Flexible and stretchable strategies for electronic skins: materials, structure, and integration. ACS Appl Electron Mater 2022;4:1-26.

14. Ruth SRA, Feig VR, Tran H, Bao Z. Microengineering pressure sensor active layers for improved performance. Adv Funct Mater 2020;30:2003491.

15. Zhang F, Jin T, Xue Z, Zhang Y. Recent progress in three-dimensional flexible physical sensors. Int J Smart Nano Mater 2022;13:17-41.

16. Yousef H, Boukallel M, Althoefer K. Tactile sensing for dexterous in-hand manipulation in robotics - a review. Sens Actuator A Phys 2011;167:171-87.

17. Li Q, Kroemer O, Su Z, Veiga FF, Kaboli M, Ritter HJ. A review of tactile information: perception and action through touch. IEEE Trans Robot 2020;36:1619-34.

18. Trung TQ, Lee NE. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv Mater 2016;28:4338-72.

19. Tang L, Shang J, Jiang X. Multilayered electronic transfer tattoo that can enable the crease amplification effect. Sci Adv 2021;7:eabe3778.

20. Gu G, Zhang N, Xu H, et al. A soft neuroprosthetic hand providing simultaneous myoelectric control and tactile feedback. Nat Biomed Eng 2021.

21. Patel S, Ershad F, Zhao M, et al. Wearable electronics for skin wound monitoring and healing. Soft Sci 2022;2:9.

22. Cheng G, Dean-leon E, Bergner F, Rogelio Guadarrama Olvera J, Leboutet Q, Mittendorfer P. A comprehensive realization of robot skin: sensors, sensing, control, and applications. Proc IEEE 2019;107:2034-51.

23. Khatib O, Yeh X, Brantner G, et al. Ocean one: a robotic avatar for oceanic discovery. IEEE Robot Automat Mag 2016;23:20-9.

24. Xu DF, Loeb GE, Fishel JA. Tactile identification of objects using Bayesian exploration. In Proceedings of the ICRA 2013: IEEE International Conference on Robotics and Automation, 6-10 May 2013; Karlsruhe, Germany; pp.3056-61.

25. Li J, Bao R, Tao J, Peng Y, Pan C. Recent progress in flexible pressure sensor arrays: from design to applications. J Mater Chem C 2018;6:11878-92.

26. Wang S, Wang C, Lin Q, et al. Flexible three-dimensional force sensor of high sensing stability with bonding and supporting composite structure for smart devices. Smart Mater Struct 2021;30:105004.

27. Wang Y, Wu X, Mei D, Zhu L, Chen J. Flexible tactile sensor array for distributed tactile sensing and slip detection in robotic hand grasping. Sens Actuator A Phys 2019;297:111512.

28. Guo Y, Wei X, Gao S, Yue W, Li Y, Shen G. Recent advances in carbon material-based multifunctional sensors and their applications in electronic skin systems. Adv Funct Mater 2021;31:2104288.

29. Li G, Liu S, Wang L, Zhu R. Skin-inspired quadruple tactile sensors integrated on a robot hand enable object recognition. Sci Robot 2020;5:eabc8134.

30. Yan Y, Hu Z, Yang Z, et al. Soft magnetic skin for super-resolution tactile sensing with force self-decoupling. Sci Robot 2021;6:eabc8801.

31. Soni M, Dahiya R. Soft eSkin: distributed touch sensing with harmonized energy and computing. Philos Trans A Math Phys Eng Sci 2020;378:20190156.

32. Lee Y, Park J, Cho S, et al. Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range. ACS Nano 2018;12:4045-54.

33. Jiang X, Chen R, Zhu H. Recent progress in wearable tactile sensors combined with algorithms based on machine learning and signal processing. APL Mater 2021;9:030906.

34. Sundaram S, Kellnhofer P, Li Y, Zhu JY, Torralba A, Matusik W. Learning the signatures of the human grasp using a scalable tactile glove. Nature 2019;569:698-702.

35. Pressure profile systems®. The TactArray - pressure mapping sensor pads. Available from: https://pressureprofile.com/sensors/tactarray [Last accessed on 8 Mar 2023].

36. Iwata H, Sugano S. Design of human symbiotic robot TWENDY-ONE. In Proceedings of the ICRA 2009: IEEE International Conference on Robotics and Automation; 12-17 May 2009; Kobe, Japan; p. 3294.

37. Someya T, Sekitani T, Iba S, Kato Y, Kawaguchi H, Sakurai T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. Proc Natl Acad Sci USA 2004;101:9966-70.

38. SynTouch Inc. SynTouch® BioTac® Tactile sensor. Available from: https://syntouchinc.com/sensor-documents/ [Last accessed on 8 Mar 2023].

39. Fishel JA, Loeb GE. Bayesian exploration for intelligent identification of textures. Front Neurorobot 2012;6:4.

40. Su Z, Kroemer O, Loeb GE, Sukhatme GS, Schaal S. Learning manipulation graphs from demonstrations using multimodal sensory signals. In Proceedings of the ICRA 2018: IEEE International Conference on Robotics and Automation; 21-25 May 2018; Brisbane, QLD, Australia; pp. 2758-65.

41. Yuan W, Dong S, Adelson EH. GelSight: High-resolution robot tactile sensors for estimating geometry and force. Sensors 2017;17:2762.

42. Li R, Platt R, Yuan WZ, et al. Localization and manipulation of small parts using GelSight tactile sensing. In Proceedings of the IROS 2014: IEEE/RSJ International Conference on Intelligent Robots and Systems; 14-18 September 2014; Chicago, IL, USA; pp. 3988-93.

43. Yuan W, Zhu C, Owens A, Srinivasan MA, Adelson EH. Shape-independent hardness estimation using deep learning and a GelSight tactile sensor. In Proceedings of the ICRA 2017: IEEE International Conference on Robotics and Automation; 29 May-3 June 2017; Singapore; pp. 951-8.

44. Mannsfeld SC, Tee BC, Stoltenberg RM, et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater 2010;9:859-64.

45. OnRobot. OMD-20-SE-40N DATASHEET. Available from: https://www.g4.com.tw/userfiles/files/Datasheet/onrobot_3d_force_sensor_omd_20_se_40n.pdf [Last accessed on 8 Mar 2023].

46. Yao KP, Kaboli M, Cheng G. Tactile-based object center of mass exploration and discrimination. In Proceedings of the humanoids 2017: IEEE-RAS 17th International Conference on Humanoid Robotics; 15-17 November 2017; Birmingham, UK; pp.876-81.

47. Kim DH, Lu N, Ma R, et al. Epidermal electronics. Science 2011;333:838-43.

48. Tenzer Y, Jentoft LP, Howe RD. The feel of MEMS barometers: inexpensive and easily customized tactile array sensors. IEEE Robot Automat Mag 2014;21:89-95.

49. Ades C, Gonzalez I, AlSaidi M, et al. Robotic finger force sensor fabrication and evaluation through a glove. Proc Fla Conf Recent Adv Robot 2018;2018:60-65.

50. Lin L, Xie Y, Wang S, et al. Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging. ACS Nano 2013;7:8266-74.

51. Kim J, Lee M, Shim HJ, et al. Stretchable silicon nanoribbon electronics for skin prosthesis. Nat Commun 2014;5:5747.

52. Boutry CM, Negre M, Jorda M, et al. A hierarchically patterned, bioinspired e-skin able to detect the direction of applied pressure for robotics. Sci Robot 2018;3:eaau6914.

53. Sim K, Rao Z, Zou Z, et al. Metal oxide semiconductor nanomembrane-based soft unnoticeable multifunctional electronics for wearable human-machine interfaces. Sci Adv 2019;5:eaav9653.

54. Yu Y, Li J, Solomon SA, et al. All-printed soft human-machine interface for robotic physicochemical sensing. Sci Robot 2022;7:eabn0495.

55. Yancheng W, Yingtong L, Wen D, Deqing M. Recent progress on three-dimensional printing processes to fabricate flexible tactile sensors. Chin J Mech Eng 2020;56:239.

56. Wang C, Dong L, Peng D, Pan C. Tactile sensors for advanced intelligent systems. Adv Intell Syst 2019;1:1900090.

57. Zhu J, Zhou C, Zhang M. Recent progress in flexible tactile sensor systems: from design to application. Soft Sci 2021;1:3.

58. Wang Y, Zhu L, Mei D, Zhu W. A highly flexible tactile sensor with an interlocked truncated sawtooth structure based on stretchable graphene/silver/silicone rubber composites. J Mater Chem C 2019;7:8669-79.

59. Park J, Lee Y, Hong J, et al. Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins. ACS Nano 2014;8:4689-97.

60. Zhang J, Zhou LJ, Zhang HM, et al. Highly sensitive flexible three-axis tactile sensors based on the interface contact resistance of microstructured graphene. Nanoscale 2018;10:7387-95.

61. Qin J, Yin LJ, Hao YN, et al. Flexible and stretchable capacitive sensors with different microstructures. Adv Mater 2021;33:e2008267.

62. Viry L, Levi A, Totaro M, et al. Flexible three-axial force sensor for soft and highly sensitive artificial touch. Adv Mater 2014;26:2659-64.

63. Wan Y, Wang Y, Guo CF. Recent progresses on flexible tactile sensors. Mater Today Phys 2017;1:61-73.

64. Pan M, Yuan C, Liang X, Zou J, Zhang Y, Bowen C. Triboelectric and piezoelectric nanogenerators for future soft robots and machines. iScience 2020;23:101682.

65. Wu W, Wen X, Wang ZL. Taxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imaging. Science 2013;340:952-7.

66. Yan Y, Hu Z, Shen Y, Pan J. Surface texture recognition by deep learning-enhanced tactile sensing. Adv Intell Syst 2022;4:2100076.

67. Ge J, Wang X, Drack M, et al. A bimodal soft electronic skin for tactile and touchless interaction in real time. Nat Commun 2019;10:4405.

68. Kawasetsu T, Horii T, Ishihara H, Asada M. Flexible tri-axis tactile sensor using spiral inductor and magnetorheological elastomer. IEEE Sensors J 2018;18:5834-41.

69. Wang H, de Boer G, Kow J, et al. Design methodology for magnetic field-based soft tri-axis tactile sensors. Sensors 2016;16:1356.

70. Jiang C, Zhang Z, Pan J, Wang Y, Zhang L, Tong L. Finger-skin-inspired flexible optical sensor for force sensing and slip detection in robotic grasping. Adv Mater Technol 2021;6:2100285.

71. D’Abbraccio J, Aliperta A, Oddo CM et al. Design and development of large-area fbg-based sensing skin for collaborative robotics. In Proceedings of the METROIND4.0&IOT 2019: IEEE International Workshop on Metrology for Industry 4.0 and Internet of Things; 04-06 June 2019; Naples, Italy; pp.410-3.

72. Wang C, Qi B, Lin M, et al. Continuous monitoring of deep-tissue haemodynamics with stretchable ultrasonic phased arrays. Nat Biomed Eng 2021;5:749-58.

73. Deng W, Deng L, Hu Y, Zhang Y, Chen G. Thermoelectric and mechanical performances of ionic liquid-modulated PEDOT:PSS/SWCNT composites at high temperatures. Soft Sci 2022;1:14.

74. Park C, Kim MS, Kim HH, et al. Stretchable conductive nanocomposites and their applications in wearable devices. Appl Phys Rev 2022;9:021312.

75. Wang X, Dong L, Zhang H, Yu R, Pan C, Wang ZL. Recent progress in electronic skin. Adv Sci 2015;2:1500169.

76. Kaltenbrunner M, Sekitani T, Reeder J, et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013;499:458-63.

77. Tien NT, Jeon S, Kim DI, et al. A flexible bimodal sensor array for simultaneous sensing of pressure and temperature. Adv Mater 2014;26:796-804.

78. Lipomi DJ, Vosgueritchian M, Tee BC, et al. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 2011;6:788-92.

79. Lee JH, Heo JS, Kim YJ, et al. A behavior-learned cross-reactive sensor matrix for intelligent skin perception. Adv Mater 2020;32:e2000969.

80. Ruth SRA, Beker L, Tran H, Feig VR, Matsuhisa N, Bao Z. Rational design of capacitive pressure sensors based on pyramidal microstructures for specialized monitoring of biosignals. Adv Funct Mater 2020;30:1903100.

81. Lee Y, Myoung J, Cho S, et al. Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins. ACS Nano 2021;15:1795-804.

82. Yang J, Luo S, Zhou X, et al. Flexible, tunable, and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes. ACS Appl Mater Interfaces 2019;11:14997-5006.

83. Liu W, Liu N, Yue Y, et al. Piezoresistive pressure sensor based on synergistical innerconnect polyvinyl alcohol nanowires/wrinkled graphene film. Small 2018;14:e1704149.

84. Wang Y, Chen Z, Mei D, Zhu L, Wang S, Fu X. Highly sensitive and flexible tactile sensor with truncated pyramid-shaped porous graphene/silicone rubber composites for human motion detection. Compos Sci Technol 2022;217:109078.

85. Ha M, Lim S, Cho S, et al. Skin-inspired hierarchical polymer architectures with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors. ACS Nano 2018;12:3964-74.

86. Wu Y, Liu Y, Zhou Y, et al. A skin-inspired tactile sensor for smart prosthetics. Sci Robot 2018;3:eaat0429.

87. Pan J, Jiang C, Zhang Z, Zhang L, Wang X, Tong L. Flexible liquid-filled fiber adapter enabled wearable optical sensors. Adv Mater Technol 2020;5:2000079.

88. Zhu L, Wang Y, Mei D, Ding W, Jiang C, Lu Y. Fully elastomeric fingerprint-shaped electronic skin based on tunable patterned graphene/silver nanocomposites. ACS Appl Mater Interfaces 2020;12:31725-37.

89. Xiong J, Chen J, Lee PS. Functional fibers and fabrics for soft robotics, wearables, and human-robot interface. Adv Mater 2021;33:e2002640.

90. Okatani T, Takahashi H, Noda K, Takahata T, Matsumoto K, Shimoyama I. A tactile sensor using piezoresistive beams for detection of the coefficient of static friction. Sensors 2016;16:718.

91. Cao D, Hu J, Li Y, Wang S, Liu H. Polymer-based optical waveguide triaxial tactile sensing for 3-dimensional curved shell. IEEE Robot Autom Lett 2022;7:3443-50.

92. Cheng X, Gong Y, Liu Y, Wu Z, Hu X. Flexible tactile sensors for dynamic triaxial force measurement based on piezoelectric elastomer. Smart Mater Struct 2020;29:075007.

93. Lee JI, Pyo S, Kim MO, Kim J. Multidirectional flexible force sensors based on confined, self-adjusting carbon nanotube arrays. Nanotechnology 2018;29:055501.

94. Liang G, Wang Y, Mei D, Xi K, Chen Z. Flexible capacitive tactile sensor array with truncated pyramids as dielectric layer for three-axis force measurement. J Microelectromech Syst 2015;24:1510-9.

95. Wang Z, Sun S, Li N, Yao T, Lv D. Triboelectric self-powered three-dimensional tactile sensor. IEEE Access 2020;8:172076-85.

96. Zhao XF, Hang CZ, Wen XH, et al. Ultrahigh-sensitive finlike double-sided e-skin for force direction detection. ACS Appl Mater Interfaces 2020;12:14136-44.

97. Chen S, Bai C, Zhang C, et al. Flexible piezoresistive three-dimensional force sensor based on interlocked structures. Sens Actuator A Phys 2021;330:112857.

98. Xu K, Fujita Y, Lu Y, et al. A wearable body condition sensor system with wireless feedback alarm functions. Adv Mater 2021;33:e2008701.

99. Wang Z, Bi P, Yang Y, et al. Star-nose-inspired multi-mode sensor for anisotropic motion monitoring. Nano Energy 2021;80:105559.

100. Zhang S, Suresh L, Yang J, Zhang X, Tan SC. Augmenting sensor performance with machine learning towards smart wearable sensing electronic systems. Adv Intell Syst 2022;4:2100194.

101. Takei K, Takahashi T, Ho JC, et al. Nanowire active-matrix circuitry for low-voltage macroscale artificial skin. Nat Mater 2010;9:821-6.

102. Zheng YQ, Liu Y, Zhong D, et al. Monolithic optical microlithography of high-density elastic circuits. Science 2021;373:88-94.

103. Sun H, Martius G. Guiding the design of superresolution tactile skins with taxel value isolines theory. Sci Robot 2022;7:eabm0608.

104. Ye J, Zhang F, Shen Z, et al. Tunable seesaw-like 3D capacitive sensor for force and acceleration sensing. NPJ Flex Electron 2021:5.

105. Wang S, Wang Y, Chen Z, Mei D. Kirigami design of flexible and conformal tactile sensor on sphere-shaped surface for contact force sensing. Adv Mater Technol 2023;8:2200993.

106. Jiang S, Liu X, Liu J, et al. Flexible metamaterial electronics. Adv Mater 2022;34:e2200070.

107. Luo Y, Li Y, Sharma P, et al. Learning human-environment interactions using conformal tactile textiles. Nat Electron 2021;4:193-201.

108. Yang T, Xie D, Li Z, Zhu H. Recent advances in wearable tactile sensors: materials, sensing mechanisms, and device performance. Mater Sci Eng R Rep 2017;115:1-37.

109. Park J, Kim M, Lee Y, Lee HS, Ko H. Fingertip skin-inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci Adv 2015;1:e1500661.

110. Zhang F, Zang Y, Huang D, Di CA, Zhu D. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat Commun 2015;6:8356.

111. You I, Mackanic DG, Matsuhisa N, et al. Artificial multimodal receptors based on ion relaxation dynamics. Science 2020;370:961-5.

112. Pang C, Lee GY, Kim TI, et al. A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat Mater 2012;11:795-801.

113. Park J, Lee Y, Hong J, et al. Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures. ACS Nano 2014;8:12020-9.

114. Park S, Kim H, Vosgueritchian M, et al. Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes. Adv Mater 2014;26:7324-32.

115. Zhu L, Wang Y, Mei D, et al. Large-area hand-covering elastomeric electronic skin sensor with distributed multifunctional sensing capability. Adv Intell Syst 2022;4:2100118.

116. Jo H, An S, Kwon HJ, Yarin AL, Yoon SS. Transparent body-attachable multifunctional pressure, thermal, and proximity sensor and heater. Sci Rep 2020;10:2701.

117. Yang R, Zhang W, Tiwari N, Yan H, Li T, Cheng H. Multimodal sensors with decoupled sensing mechanisms. Adv Sci 2022;9:e2202470.

118. Someya T, Kato Y, Sekitani T, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA 2005;102:12321-5.

119. Harada S, Kanao K, Yamamoto Y, Arie T, Akita S, Takei K. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin. ACS Nano 2014;8:12851-7.

120. Yu P, Liu W, Gu C, Cheng X, Fu X. Flexible piezoelectric tactile sensor array for dynamic three-axis force measurement. Sensors 2016;16:819.

121. Ho DH, Sun Q, Kim SY, Han JT, Kim DH, Cho JH. Stretchable and multimodal all graphene electronic skin. Adv Mater 2016;28:2601-8.

122. Hua Q, Sun J, Liu H, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat Commun 2018;9:244.

123. Rashid M, Khan MA, Alhaisoni M, et al. A sustainable deep learning framework for object recognition using multi-layers deep features fusion and selection. Sustainability 2020;12:5037.

124. Wang Y, Chen J, Mei D. Flexible tactile sensor array for slippage and grooved surface recognition in sliding movement. Micromachines 2019;10:579.

125. Cao G, Zhou Y, Bollegala D, Luo S. Spatio-temporal attention model for tactile texture recognition. In Proceedings of the IROS 2020: IEEE/RSJ International Conference on Intelligent Robots and Systems; 25-29 October 2020; Las Vegas, Nevada, USA; pp. 9896-902.

126. Drimus A, Kootstra G, Bilberg A, Kragic D. Design of a flexible tactile sensor for classification of rigid and deformable objects. Robot Auton Syst 2014;62:3-15.

127. Cui Z, Wang W, Guo L, et al. Haptically quantifying young’s modulus of soft materials using a self-locked stretchable strain sensor. Adv Mater 2022;34:e2104078.

128. Kerr E, McGinnity TM, Coleman S. Material classification based on thermal properties - a robot and human evaluation. In Proceedings of the ROBIO 2013: IEEE International Conference on Robotics and Biomimetics; 12-14 December 2013; Shenzhen, China; pp.1048-53.

129. Hattori Y, Falgout L, Lee W, et al. Multifunctional skin-like electronics for quantitative, clinical monitoring of cutaneous wound healing. Adv Healthc Mater 2014;3:1597-607.

130. Gao W, Emaminejad S, Nyein HYY, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016;529:509-14.

131. Seok D, Kim YB, Kim U, Lee SY, Choi HR. Compensation of environmental influences on sensorized-forceps for practical surgical tasks. IEEE Robot Autom Lett 2019;4:2031-7.

132. Dai Y, Gao S. A flexible multi-functional smart skin for force, touch position, proximity, and humidity sensing for humanoid robots. IEEE Sensors J 2021;21:26355-63.

133. Kanoulas D, Lee J, Caldwell DG, Tsagarakis NG. Center-of-mass-based grasp pose adaptation using 3D range and force/torque sensing. Int J Human Robot 2018;15:1850013.

134. McGovern S, Xiao J. Learning and predicting center of mass through manipulation and torque sensing. In Proceedings of the ICMRE 2022: 8th International Conference on Mechatronics and Robotics Engineering; 10-12 February 2022; Munich, Germany; pp. 60-6.

135. Yi ZK, Calandra R, Veiga F et al. Active tactile object exploration with gaussian processes. In Proceedings of the IROS 2016: IEEE/RSJ International Conference on Intelligent Robots and Systems; 9-14 October 2016; Daejeon, Korea; pp. 4925-30.

136. Lee WY, Huang MB, Huang HP. Learning robot tactile sensing of object for shape recognition using multi-fingered robot hands. In Proceedings of the RO-MAN 2017: IEEE International Symposium on Robot and Human Interactive Communication; 28 August-1 September 2017; Lisbon, Portugal; pp.1311-6.

137. Luo S, Mou W, Althoefer K, Liu H. iCLAP: shape recognition by combining proprioception and touch sensing. Auton Robot 2019;43:993-1004.

138. Murali PK, Dutta A, Gentner M, Burdet E, Dahiya R, Kaboli M. Active visuo-tactile interactive robotic perception for accurate object pose estimation in dense clutter. IEEE Robot Autom Lett 2022;7:4686-93.

139. Dikhale S, Patel K, Dhingra D, et al. VisuoTactile 6D pose estimation of an in-hand object using vision and tactile sensor data. IEEE Robot Autom Lett 2022;7:2148-55.

140. Zhao D, Sun F, Wang Z, Zhou Q. A novel accurate positioning method for object pose estimation in robotic manipulation based on vision and tactile sensors. Int J Adv Manuf Technol 2021;116:2999-3010.

141. Saal HP, Ting JA, Vijayakumar S. Active estimation of object dynamics parameters with tactile sensors. In Proceedings of the IROS 2010: IEEE/RSJ International Conference on Intelligent Robots and Systems; 18-22 October 2010; Taipei, Taiwan; pp. 916-21.

142. Miyamoto T, Sasaki H, Matsubara T. Exploiting visual-outer shape for tactile-inner shape estimation of objects covered with soft materials. IEEE Robot Autom Lett 2020;5:6278-85.

143. Chun S, Son W, Kim H, Lim SK, Pang C, Choi C. Self-powered pressure- and vibration-sensitive tactile sensors for learning technique-based neural finger skin. Nano Lett 2019;19:3305-12.

144. Yeo JC, Liu Z, Zhang Z, Zhang P, Wang Z, Lim CT. Wearable mechanotransduced tactile sensor for haptic perception. Adv Mater Technol 2017;2:1700006.

145. Chun S, Hwang I, Son W, Chang JH, Park W. Recognition, classification, and prediction of the tactile sense. Nanoscale 2018;10:10545-53.

146. Qiu Y, Sun S, Wang X, et al. Nondestructive identification of softness via bioinspired multisensory electronic skins integrated on a robotic hand. NPJ Flex Electron 2022;6:45.

147. Zou Q, Yang F, Wang Y. Highly sensitive flexible modulus sensor for softness perception and clinical application. J Micromech Microeng 2022;32:035004.

148. Zhao S, Zhu R. A smart artificial finger with multisensations of matter, temperature, and proximity. Adv Mater Technol 2018;3:1800056.

149. Ciui B, Martin A, Mishra RK, et al. Chemical sensing at the robot fingertips: toward automated taste discrimination in food samples. ACS Sens 2018;3:2375-84.

150. Chitta S, Sturm J, Piccoli M, Burgard W. Tactile sensing for mobile manipulation. IEEE Trans Robot 2011;27:558-68.

151. Xia Z, Deng Z, Fang B, Yang Y, Sun F. A review on sensory perception for dexterous robotic manipulation. Int J Adv Robot Syst 2022;19:172988062210959.

152. Guo ZH, Wang HL, Shao J, et al. Bioinspired soft electroreceptors for artificial precontact somatosensation. Sci Adv 2022;8:eabo5201.

153. Ham J, Han AK, Cutkosky MR, Bao Z. UV-laser-machined stretchable multi-modal sensor network for soft robot interaction. NPJ Flex Electron 2022;6:94.

154. Cheng Y, Su CZ, Jia YY, Xi N. Data correlation approach for slippage detection in robotic manipulations using tactile sensor array. In Proceedings of the IROS 2015: IEEE/RSJ International Conference on Intelligent Robots and Systems; 28 September-3 October 2015; Hamburg, Germany; pp. 2717-22.

155. James JW, Pestell N, Lepora NF. Slip detection with a biomimetic tactile sensor. IEEE Robot Autom Lett 2018;3:3340-6.

156. Van Wyk K, Falco J. Calibration and analysis of tactile sensors as slip detectors. In Proceedings of the ICRA 2018: IEEE International Conference on Robotics and Automation; 21-25 May 2018; Brisbane, Australia; pp. 2744-51.

157. Su Z, Hausman K, Chebotar Y, et al. Force estimation and slip detection/classification for grip control using a biomimetic tactile sensor. In Proceedings of the Humanoids 2015: IEEE-RAS International Conference on Humanoid Robots; 3-5 November 2015; Seoul, Korea; pp. 297-303.

158. Bhattacharjee T, Rehg JM, Kemp CC. Inferring object properties with a tactile-sensing array given varying joint stiffness and velocity. Int J Human Robot 2018;15:1750024.

159. Meier M, Walck G, Haschke R, Ritter HJ. Distinguishing sliding from slipping during object pushing. In Proceedings of the IROS 2016: IEEE/RSJ International Conference on Intelligent Robots and Systems; 9-14 October 2016; Daejeon, Korea; pp. 5579-84.

160. Hogan FR, Ballester J, Dong SY, Rodriguez A. Tactile dexterity: manipulation primitives with tactile feedback. In Proceedings of the ICRA 2020: IEEE International Conference on Robotics and Automation; 31 May-31 August 2020; Paris, France; pp. 8863-9.

161. Hellebrekers T, Zhang K, Veloso M, Kroemer O, Majidi C. Localization and force-feedback with soft magnetic stickers for precise robot manipulation. In Proceedings of the IROS 2020: IEEE/RSJ International Conference on Intelligent Robots and Systems; 25-29 October 2020; Las Vegas, Nevada, USA; pp. 8867-74.

162. Kappler D, Pastort P, Kalakrishnant M, Wuthrich M, Schaal S. Data-driven online decision making for autonomous manipulation. Robot Sci Syst 2015.

163. Hoffmann H, Chen Z, Earl D, Mitchell D, Salemi B, Sinapov J. Adaptive robotic tool use under variable grasps. Robot Auton Syst 2014;62:833-46.

164. Zhang K, Sharma M, Veloso M, Kroemer O. Leveraging multimodal haptic sensory data for robust cutting. In Proceedings of the Humanoids 2019: IEEE-RAS 19th International Conference on Humanoid Robots; 15-17 October 2019; Toronto, Ontario, Canada; pp. 409-16.

165. Ding H, Yang X, Zheng N, Li M, Lai Y, Wu H. Tri-Co robot: a Chinese robotic research initiative for enhanced robot interaction capabilities. Natl Sci Rev 2018;5:799-801.

166. Wei P, Yang X, Cao Z, et al. Flexible and stretchable electronic skin with high durability and shock resistance via embedded 3D printing technology for human activity monitoring and personal healthcare. Adv Mater Technol 2019;4:1900315.

167. Webb RC, Bonifas AP, Behnaz A, et al. Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat Mater 2013;12:938-44.

168. Guo H, Lan C, Zhou Z, Sun P, Wei D, Li C. Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 2017;9:6246-53.

169. Li Z, Zheng Q, Wang ZL, Li Z. Nanogenerator-based self-powered sensors for wearable and implantable electronics. Research 2020;2020:8710686.

170. Liu Z, Ma Y, Ouyang H, et al. Transcatheter self-powered ultrasensitive endocardial pressure sensor. Adv Funct Mater 2019;29:1807560.

171. Suzuki K, Yataka K, Okumiya Y, et al. Rapid-response, widely stretchable sensor of aligned MWCNT/elastomer composites for human motion detection. ACS Sens 2016;1:817-25.

172. Lin R, Kim HJ, Achavananthadith S, et al. Wireless battery-free body sensor networks using near-field-enabled clothing. Nat Commun 2020;11:444.

173. Wong TH, Yiu CK, Zhou J, et al. Tattoo-like epidermal electronics as skin sensors for human machine interfaces. Soft Sci 2021;1:10.

174. Su M, Li F, Chen S, et al. Nanoparticle based curve arrays for multirecognition flexible electronics. Adv Mater 2016;28:1369-74.

175. Yan Z, Pan T, Wang D, et al. Stretchable micromotion sensor with enhanced sensitivity using serpentine layout. ACS Appl Mater Interfaces 2019;11:12261-71.

176. Pyo S, Lee J, Kim W, Jo E, Kim J. Multi-layered, hierarchical fabric-based tactile sensors with high sensitivity and linearity in ultrawide pressure range. Adv Funct Mater 2019;29:1902484.

177. Zhou Y, Wang Y, Liu R, Xiao L, Zhang Q, Huang Y. Multichannel noninvasive human-machine interface via stretchable µm thick sEMG patches for robot manipulation. J Micromech Microeng 2018;28:014005.

178. He T, Sun Z, Shi Q, et al. Self-powered glove-based intuitive interface for diversified control applications in real/cyber space. Nano Energy 2019;58:641-51.

179. Dong W, Xiao L, Hu W, Zhu C, Huang Y, Yin Z. Wearable human-machine interface based on PVDF piezoelectric sensor. Trans Inst Meas Control 2017;39:398-403.

180. Mishra S, Norton JJS, Lee Y, et al. Soft, conformal bioelectronics for a wireless human-wheelchair interface. Biosens Bioelectron 2017;91:796-803.

181. Li Y, Zhao M, Yan Y, et al. Multifunctional biomimetic tactile system via a stick-slip sensing strategy for human-machine interactions. NPJ Flex Electron 2022;6:46.

182. Guo W, Hu Y, Yin Z, Wu H. On-skin stimulation devices for haptic feedback and human-machine interfaces. Adv Mater Technol 2022;7:2100452.

183. Yang C, Zhu Y, Chen Y. A review of human-machine cooperation in the robotics domain. IEEE Trans Human Mach Syst 2022;52:12-25.

184. Yu X, Xie Z, Yu Y, et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019;575:473-9.

185. Sun Z, Zhu M, Zhang Z, et al. Artificial intelligence of things (AIoT) enabled virtual shop applications using self-powered sensor enhanced soft robotic manipulator. Adv Sci 2021;8:e2100230.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/