fig8

Organic biodegradable piezoelectric materials and their potential applications as bioelectronics

Figure 8. Therapeutic vehicles based on biodegradable piezoelectric materials. (A) Schematic illustration of surface charges generated by piezoelectric materials upon mechanical strain to trigger the signaling pathways of attached cells. Reproduced with permission[118]. Copyright 2020, John Wiley and sons. (B) Schematic illustration of the implantation of piezoelectric PLLA nanofiber covering the defects on the calvaria bone of mice. (C) Piezoelectric PLLA nanofiber with US effectively promote bone formation (yellow arrow) compared with the other groups. (B and C) reproduced with permission[129]. Copyright 2020, Elsevier. (D) Schematic illustration of electric field induced upregulation of regeneration-related genes in the neuronal cell body through calcium dependent mechanism. Reproduced with permission[134]. Copyright 2020, Elsevier. (E) Schematic illustration of three phases revealing the effects of electric fields on wound healing. Reproduced with permission[155]. Copyright 2016, John Wiley and sons. (F) In vivo output voltage curves of chitosan films (CM) and polydopamine coated chitosan films (CM@DA) immobilized on the back of mice. (G) Representative images of wounds on days 0, 4, 7, 10, and 14 after the treatment with CM and CM@DA films, respectively. (D and E) reproduced with permission[157]. Copyright 2020, Elsevier.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/