REFERENCES

1. Herbert R, Kim JH, Kim YS, Lee HM, Yeo WH. Soft material-enabled, flexible hybrid electronics for medicine, healthcare, and human-machine interfaces. Materials 2018;11:187.

2. Elango N, Faudzi AAM. A review article: investigations on soft materials for soft robot manipulations. Int J Adv Manuf Technol 2015;80:1027-37.

3. Miriyev A, Stack K, Lipson H. Soft material for soft actuators. Nat Commun 2017;8:596.

4. Lee JH, Kim H, Kim JH, Lee SH. Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation. Lab Chip 2016;16:959-76.

5. Choi M, Kim Y, Ha C. Polymers for flexible displays: from material selection to device applications. Prog Polym Sci 2008;33:581-630.

6. Khatib M, Zohar O, Haick H. Self-healing soft sensors: from material design to implementation. Adv Mater 2021;33:e2004190.

7. Liu C, Wang Y, Zhang N, et al. A self-powered and high sensitivity acceleration sensor with V-Q-a model based on triboelectric nanogenerators (TENGs). Nano Energy 2020;67:104228.

8. Liu C, Fang L, Zou H, et al. Theoretical investigation and experimental verification of the self-powered acceleration sensor based on triboelectric nanogenerators (TENGs). Extreme Mech Lett 2021;42:101021.

9. Lee G, Kim CS, Kim S, Kim YJ, Choi H, Cho BJ. Flexible heatsink based on a phase-change material for a wearable thermoelectric generator. Energy 2019;179:12-8.

10. Cheng K, Hu JP, Wu YC, et al. Microwave-assisted synthesis of high thermal stability and colourless polyimides containing pyridine. Royal Soc Open Sci 2019;6:190196.

11. Hou X, Mao Y, Zhang R, Fang D. Super-flexible polyimide nanofiber cross-linked polyimide aerogel membranes for high efficient flexible thermal protection. Chem Eng J 2021;417:129341.

12. Schander A, Stemmann H, Tolstosheeva E, et al. Design and fabrication of novel multi-channel floating neural probes for intracortical chronic recording. Sensor Actuat A Phys 2016;247:125-35.

13. Ren X, Wang J, Sun G, Zhou S, Liu J, Han S. Effects of structural design including cellular structure precision controlling and sharp holes introducing on sound absorption behavior of polyimide foam. Polym Test 2020;84:106393.

14. Yang T, Yu Y, Zhu L, Wu X, Wang X, Zhang J. Fabrication of silver interdigitated electrodes on polyimide films via surface modification and ion-exchange technique and its flexible humidity sensor application. Sensor Actuat B Chem 2015;208:327-33.

15. Chen X, Liu H, Zheng Y, et al. Highly compressible and robust polyimide/carbon nanotube composite aerogel for high-performance wearable pressure sensor. ACS Appl Mater Interfaces 2019;11:42594-606.

16. Gandla S, Naqi M, Lee M, et al. Highly linear and stable flexible temperature sensors based on laser-induced carbonization of polyimide substrates for personal mobile monitoring. Adv Mater Technol 2020;5:2000014.

17. Choi S, Kim S, Kim I. Ultrafast optical reduction of graphene oxide sheets on colorless polyimide film for wearable chemical sensors. NPG Asia Mater 2016;8:e315.

18. Deng J, Cao D, Yang X, Zhang G. Cross-linked cellulose/carboxylated polyimide nanofiber separator for lithium-ion battery application. Chem Eng J 2022;433:133934.

19. Yi C, Li W, Shi S, et al. High-temperature-resistant and colorless polyimide: preparations, properties, and applications. Solar Energy 2020;195:340-54.

20. Chen L, Yu H, Dirican M, et al. Highly transparent and colorless nanocellulose/polyimide substrates with enhanced thermal and mechanical properties for flexible OLED displays. Adv Mater Interfaces 2020;7:2000928.

21. Li X, Yang Y, Zhang Y, et al. Dual-method molding of 4D shape memory polyimide ink. Mater Des 2020;191:108606.

22. Liaw D, Wang K, Huang Y, Lee K, Lai J, Ha C. Advanced polyimide materials: syntheses, physical properties and applications. Prog Polym Sci 2012;37:907-74.

23. Othman MBH, Ahmad Z, Akil HM, Zakaria MR, Ullah F. The effects of the SiOSi segment presence in BAPP/BPDA polyimide system on morphology and hardness properties for opto-electronic application. Mater Des 2015;82:98-105.

24. Wilson D. PMR-15 processing, properties and problems-a review. Br Polym J 1988;20:405-16.

25. Terraza CA, Liu J, Nakamura Y, Shibasaki Y, Ando S, Ueda M. Synthesis and properties of highly refractive polyimides derived from fluorene-bridged sulfur-containing dianhydrides and diamines. J Polym Sci A Polym Chem 2008;46:1510-20.

26. Vinogradova S, Vygodskii Y, Korshak V. Some features of the synthesis of polyimides by single-stage high-temperature polycyclization. Polym Sci USSR 1970;12:2254-62.

27. Zhang X, Zhao X, Xue T, Yang F, Fan W, Liu T. Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation. Chem Eng J 2020;385:123963.

28. Salem JR, Sequeda FO, Duran J, Lee WY, Yang RM. Solventless polyimide films by vapor deposition. J Vac Sci Technol A 1986;4:369-74.

29. Chen W, Chen W, Zhang B, Yang S, Liu C. Thermal imidization process of polyimide film: Interplay between solvent evaporation and imidization. Polymer 2017;109:205-15.

30. Wang Z, Chen X, Yang H, Zhao J, Yang S. The in-plane orientation and thermal mechanical properties of the chemically imidized polyimide films. Chin J Polym Sci 2019;37:268-78.

31. Hicyilmaz A, Celik Bedeloglu A. Applications of polyimide coatings: a review. SN Appl Sci 2021:3.

32. Unsal E, Cakmak M. Real-time characterization of physical changes in polyimide film formation: from casting to imidization. Macromolecules 2013;46:8616-27.

33. Tsai F, Alfonso EL, Harding DR, Chen SH. Processing vapour-deposited polyimide. J Phys D Appl Phys 2001;34:3011-8.

34. Putkonen M, Harjuoja J, Sajavaara T, Niinistö L. Atomic layer deposition of polyimide thin films. J Mater Chem 2007;17:664-9.

35. Wang L, Yu X, Wang D, et al. High modulus and high strength ultra-thin polyimide films with hot-stretch induced molecular orientation. Mater Chem Phys 2013;139:968-74.

36. Zhang M, Niu H, Wu D. Polyimide fibers with high strength and high modulus: preparation, structures, properties, and applications. Macromol Rapid Commun 2018;39:e1800141.

37. Liu F, Guo H, Zhao Y, Qiu X, Gao L, Zhang Y. Atomic oxygen-resistant polyimide composite fibers based on wet spinning of polyamic acid-POSS ammonium salts. Polym Degrad Stab 2019;168:108959.

38. Wang S, Dong J, Li Z, et al. Polyimide fibers prepared by a dry-spinning process: enhanced mechanical properties of fibers containing biphenyl units. J Appl Polym Sci 2016:133.

39. Park SK, Farris RJ. Dry-jet wet spinning of aromatic polyamic acid fiber using chemical imidization. Polymer 2001;42:10087-93.

40. Shih WP, Tsao LC, Lee CW, et al. Flexible temperature sensor array based on a graphite-polydimethylsiloxane composite. Sensors 2010;10:3597-610.

41. Gu W, Wang G, Zhou M, Zhang T, Ji G. Polyimide-based foams: fabrication and multifunctional applications. ACS Appl Mater Interfaces 2020;12:48246-58.

42. Yang M, Zhang C, Lv Q, et al. Rational design of novel efficient palladium electrode embellished 3D hierarchical graphene/polyimide foam for hydrogen peroxide electroreduction. ACS Appl Mater Interfaces 2020;12:934-44.

43. Ren X, Sun G, Wang L, Chen R, Wang J, Han S. Facile adjusting for cells of lightweight isocyanate-based polyimide foam and operable combination between different distinctive acoustic foams for higher performance. Chin J Polym Sci 2021;39:237-48.

44. Ye W, Lin G, Wu W, et al. Separated 3D printing of continuous carbon fiber reinforced thermoplastic polyimide. Compos Part A Appl Sci Manuf 2019;121:457-64.

45. Gagliani J, Supkis D. Non-flammable polyimide materials for aircraft and spacecraft applications. Acta Astronaut 1980;7:653-83.

46. Miao Y, Zhu G, Hou H, Xia Y, Liu T. Electrospun polyimide nanofiber-based nonwoven separators for lithium-ion batteries. J Power Sources 2013;226:82-6.

47. Abadie M. High performance polymers-polyimides based: from chemistry to applications. BoD-books on demand; 2012. Available from: https://sc.panda321.com/extdomains/books.google.com.hk/books?id=cOacDwAAQBAJ&lpg=PA3&ots=sGbHpWPNSq&dq=High%20performance%20polymers-polyimides%20based%3A%20from%20chemistry%20to%20applications&lr&hl=zh-CN&pg=PA3 [Last accessed on 11 Jan 2023].

48. Ni H, Liu J, Wang Z, Yang S. A review on colorless and optically transparent polyimide films: Chemistry, process and engineering applications. J Ind Eng Chem 2015;28:16-27.

49. Sugimoto E. Applications of polyimide films to the electrical and electronic industries in Japan. IEEE Electr Insul Mag 1989;5:15-23.

50. Schander A, Gancz JM, Tintelott M, Lang W. Towards long-term stable polyimide-based flexible electrical insulation for chronically implanted neural electrodes. Micromachines 2021;12:1279.

51. Iwamoto M, Kubota T, Sekine M. Electrical properties of polyimide Langmuir-Blodgett films deposited on noble metal electrodes. J Phys D Appl Phys 1990;23:575-80.

52. Lee B, Kim H, Lee D. Electrical properties of polyimide thin films formed by the vapor deposition polymerization method. Surf Coat Technol 2002;150:182-7.

53. Zhou L, Wu G, Gao B, et al. Study on charge transport mechanism and space charge characteristics of polyimide films. IEEE Trans Dielect Electr Insul 2009;16:1143-9.

54. Ogbonna VE, Popoola API, Popoola OM, Adeosun SO. A review on polyimide reinforced nanocomposites for mechanical, thermal, and electrical insulation application: challenges and recommendations for future improvement. Polym Bull 2022;79:663-95.

55. Feng Y, Yin J, Chen M, Song M, Su B, Lei Q. Effect of nano-TiO2 on the polarization process of polyimide/TiO2 composites. Mater Lett 2013;96:113-6.

56. Li Y, Yang C, Li N, et al. Microstructure and electrical properties of polyimide-based composites reinforced by high-aspect-ratio titanium oxide nanowires. Surf Coat Technol 2019;361:425-31.

57. Yan W, Zhang Y, Sun H, et al. Polyimide nanocomposites with boron nitride-coated multi-walled carbon nanotubes for enhanced thermal conductivity and electrical insulation. J Mater Chem A 2014;2:20958-65.

58. Wang Y, Zhang X, Ding X, et al. Imidization-induced carbon nitride nanosheets orientation towards highly thermally conductive polyimide film with superior flexibility and electrical insulation. Compos Part B Eng 2020;199:108267.

59. He X, Wang Y. Highly thermally conductive polyimide composite films with excellent thermal and electrical insulating properties. Ind Eng Chem Res 2020;59:1925-33.

60. Ceyssens F, Puers R. Insulation lifetime improvement of polyimide thin film neural implants. J Neural Eng 2015;12:054001.

61. Tafreshi OA, Ghaffari-mosanenzadeh S, Karamikamkar S, et al. Novel, flexible, and transparent thin film polyimide aerogels with enhanced thermal insulation and high service temperature. J Mater Chem C 2022;10:5088-108.

62. Serbezeanu D, Popa AM, Stelzig T, Sava I, Rossi RM, Fortunato G. Preparation and characterization of thermally stable polyimide membranes by electrospinning for protective clothing applications. Text Res J 2015;85:1763-75.

63. Wang Y, Cui Y, Shao Z, et al. Multifunctional polyimide aerogel textile inspired by polar bear hair for thermoregulation in extreme environments. Chem Eng J 2020;390:124623.

64. Kimoto Y, Fujita T, Furuta N, Kitamura A, Suzuki H. Development of space-qualified photocurable-silsesquioxane-coated polyimide films. J Spacecraft Rockets 2016;53:1028-34.

65. Natraj S, Ravindran V, Somanathan S, et al. Ultrasonic and acousto ultrasonic evaluation of polyimide pipes and its interface for Indian cryogenic rocket stages for space launch vehicles. In Indian national seminar & exhibition on non-destructive evaluation NDE. 2016. Available from: https://www.ndt.net/?id=21202 [Last accessed on 11 Jan 2023].

66. Ghaffari-Mosanenzadeh S, Aghababaei Tafreshi O, Karamikamkar S, et al. Recent advances in tailoring and improving the properties of polyimide aerogels and their application. Adv Colloid Interface Sci 2022;304:102646.

67. Ni L, Luo Y, Qiu C, et al. Mechanically flexible polyimide foams with different chain structures for high temperature thermal insulation purposes. Mater Today Phys 2022;26:100720.

68. Ni L, Luo Y, Qiu B, et al. Combining microwave-assisted foaming and post curing process to prepare lightweight flexible polyimide foams for thermal insulation applications. Macro Mater Eng 2022;307:2100941.

69. Zhang H, Fan X, Chen W, et al. A simple and green strategy for preparing flexible thermoplastic polyimide foams with exceptional mechanical, thermal-insulating properties, and temperature resistance for high-temperature lightweight composite sandwich structures. Compos Part B Eng 2022;228:109405.

70. Ma S, Wang C, Cong B, et al. Anisotropic all-aromatic polyimide aerogels with robust and high-temperature stable properties for flexible thermal protection. Chem Eng J 2022;431:134047.

71. Yan L, Fu L, Chen Y, Tian H, Xiang A, Rajulu AV. Improved thermal stability and flame resistance of flexible polyimide foams by vermiculite reinforcement. J Appl Polym Sci 2017:134.

72. Yang F, Zhao X, Xue T, et al. Superhydrophobic polyvinylidene fluoride/polyimide nanofiber composite aerogels for thermal insulation under extremely humid and hot environment. Sci China Mater 2021;64:1267-77.

73. Tian J, Yang Y, Xue T, Chao G, Fan W, Liu T. Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy. J Mater Sci Technol 2022;105:194-202.

74. Doan HN, Tagami S, Vo PP, et al. Scalable fabrication of cross-linked porous centrifugally spun polyimide fibers for thermal insulation application. EurPolym J 2022;169:111123.

75. Shi T, Zheng Z, Liu H, Wu D, Wang X. Flexible and foldable composite films based on polyimide/phosphorene hybrid aerogel and phase change material for infrared stealth and thermal camouflage. Compos Sci Technol 2022;217:109127.

76. Jiang C, Chen J, Lai X, et al. Mechanically robust and multifunctional polyimide/MXene composite aerogel for smart fire protection. Chem Eng J 2022;434:134630.

77. Liu X, Zhan M, Wang K. Influence of foam structure and service environment on sound absorption characteristics of polyimide foams. High Perform Polym 2012;24:646-53.

78. Ma J, Zhan M, Wang K. Facile fabrication of polyimide foam sheets with millimeter thickness: processing, morphology, and properties. J Appl Polym Sci 2014:131.

79. Song S, Shi Y, Tan J, et al. An efficient approach to fabricate lightweight polyimide/aramid sponge with excellent heat insulation and sound absorption performance. J Ind Eng Chem 2022;109:404-12.

80. Xu K, Lu Y, Takei K. Multifunctional skin-inspired flexible sensor systems for wearable electronics. Adv Mater Technol 2019;4:1800628.

81. Lim HR, Kim HS, Qazi R, Kwon YT, Jeong JW, Yeo WH. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv Mater 2020;32:e1901924.

82. Jiang W, Zhang F, Lin Q. Flexible relative humidity sensor based on reduced graphene oxide and interdigital electrode for smart home. Micro Nano Lett 2022;17:134-8.

83. Schubert P, Nevin J. A polyimide-based capacitive humidity sensor. IEEE Trans Electron Devices 1985;32:1220-3.

84. Lofgren H, Mills F. Polyimide capacitive humidity sensors. 1988. Available from: https://hdl.handle.net/1969.1/6540 [Last accessed on 11 Jan 2023].

85. Denton DD, Jaafar MAS, Ralston ARK, et al. The long term reliability of a switched-capacitor relative humidity sensor system. In Proceedings of the 33rd midwest symposium on circuits and systems. IEEE 1990;2:854-57.

86. Sager K, Schroth A, Nakladal A, Gerlach G. Humidity-dependent mechanical properties of polyimide films and their use for IC-compatible humidity sensors. Sensor Actuat A Phys 1996;53:330-4.

87. Boudaden J, Steinmaßl M, Endres HE, et al. Polyimide-based capacitive humidity sensor. Sensors 2018;18:1516.

88. Zhang J, Gao Y, Li C, et al. Laser direct writing of flexible antenna sensor for strain and humidity sensing. Opto-Electron Eng 2022;49:210316-1.

89. Kuzubasoglu B, Kursun Bahadir S. Flexible temperature sensors: a review. Sensor Actuat A Phys 2020;315:112282.

90. Moser Y, Gijs MAM. Miniaturized flexible temperature sensor. In transducers 07 & Eurosensors XXI, digest of technical papers 2007. J Microelectromech Syst 2007;16:1349-54.

91. Sahatiya P, Puttapati SK, Srikanth VVSS, Badhulika S. Graphene-based wearable temperature sensor and infrared photodetector on a flexible polyimide substrate. Flex Print Electron 2016;1:025006.

92. Xiao S, Che L, Li X, Wang Y. A novel fabrication process of MEMS devices on polyimide flexible substrates. Microelectron Eng 2008;85:452-7.

93. Wu Z, Li C, Hartings JA, Narayan R, Ahn C. Polysilicon thin film developed on flexible polyimide for biomedical applications. J Microelectromech Syst 2016;25:585-92.

94. Gao W, Zhang Z, Zhang Y, et al. Efficient carbon nanotube/polyimide composites exhibiting tunable temperature coefficient of resistance for multi-role thermal films. Compos Sci Technol 2020;199:108333.

95. Bi P, Liu X, Yang Y, et al. Silver-nanoparticle-modified polyimide for multiple artificial skin-sensing applications. Adv Mater Technol 2019;4:1900426.

96. Dayeh SA, Butler DP, Çelik-butler Z. Micromachined infrared bolometers on flexible polyimide substrates. Sensor Actuat A Phys 2005;118:49-56.

97. Tan Z, Shikida M, Hirota M, Sato K, Iwasaki T, Iriye Y. Experimental and theoretical study of an on-wall in-tube flexible thermal sensor. J Micromech Microeng 2007;17:679-86.

98. Dobrzynska JA, Gijs MA. Flexible polyimide-based force sensor. Sensor Actuat A Phys 2012;173:127-35.

99. Yang J, Ye Y, Li X, Lü X, Chen R. Flexible, conductive, and highly pressure-sensitive graphene-polyimide foam for pressure sensor application. Compos Sci Technol 2018;164:187-94.

100. Wang G, Li M, Zhang J, et al. Flexible, stable and durable polydopamine@lead zirconate titanate/polyimide composite membranes for piezoelectric pressure sensors and limb motion monitoring. Compos Part C Open Access 2022;8:100292.

101. Huang J, Wang J, Yang Z, Yang S. High-performance graphene sponges reinforced with polyimide for room-temperature piezoresistive sensing. ACS Appl Mater Interfaces 2018;10:8180-9.

102. Zhang F, Feng Y, Qin M, et al. Stress controllability in thermal and electrical conductivity of 3D elastic graphene-crosslinked carbon nanotube sponge/polyimide nanocomposite. Adv Funct Mater 2019;29:1901383.

103. Liu H, Chen X, Zheng Y, et al. Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv Funct Mater 2021;31:2008006.

104. Zhu Y, Wu Y, Wang G, et al. A flexible capacitive pressure sensor based on an electrospun polyimide nanofiber membrane. Org Electron 2020;84:105759.

105. Alrammouz R, Podlecki J, Abboud P, Sorli B, Habchi R. A review on flexible gas sensors: from materials to devices. Sensor Actuat A Phys 2018;284:209-31.

106. Stanford MG, Yang K, Chyan Y, Kittrell C, Tour JM. Laser-induced graphene for flexible and embeddable gas sensors. ACS Nano 2019;13:3474-82.

107. Kirchner P, Oberländer J, Friedrich P, et al. Realisation of a calorimetric gas sensor on polyimide foil for applications in aseptic food industry. Sensor Actuat B Chem 2012;170:60-6.

108. Rashid T, Phan D, Chung G. A flexible hydrogen sensor based on Pd nanoparticles decorated ZnO nanorods grown on polyimide tape. Sensor Actuat B Chem 2013;185:777-84.

109. Li Y, Liu J, Zhang J, Liang X, Zhang X, Qi Q. Deposition of In2O3 nanofibers on polyimide substrates to construct high-performance and flexible trimethylamine sensor. Chin Chem Lett 2020;31:2142-4.

110. Lin Z, Young S, Chang S. CO2 gas sensors based on carbon nanotube thin films using a simple transfer method on flexible substrate. IEEE Sensors J 2015;15:7017-20.

111. Lv Y, Wu J, Xu Z. Colorimetric and fluorescent sensor constructing from the nanofibrous membrane of porphyrinated polyimide for the detection of hydrogen chloride gas. Sensor Actuat B Chem 2010;148:233-9.

112. Kim YS. Microheater-integrated single gas sensor array chip fabricated on flexible polyimide substrate. Sensor Actuat B Chem 2006;114:410-7.

113. Briand D, Colin S, Courbat J, Raible S, Kappler J, Derooij N. Integration of MOX gas sensors on polyimide hotplates. Sensor Actuat B Chem 2008;130:430-5.

114. Lin Y, Huang L, Chen L, et al. Fully gravure-printed NO2 gas sensor on a polyimide foil using WO3-PEDOT:PSS nanocomposites and Ag electrodes. Sensor Actuat B Chem 2015;216:176-83.

115. Papadopoulou EL, Morselli D, Prato M, Barcellona A, Athanassiou A, Bayer IS. An efficient pure polyimide ammonia sensor. J Mater Chem C 2016;4:7790-7.

116. Padua LMG, Yeh JM, Santiago KS. A novel application of electroactive polyimide doped with gold nanoparticles: as a chemiresistor sensor for hydrogen sulfide gas. Polymers 2019;11:1918.

117. Lee E, VahidMohammadi A, Yoon YS, Beidaghi M, Kim DJ. Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sens 2019:1603-11.

118. Krško O, Plecenik T, Roch T, et al. Flexible highly sensitive hydrogen gas sensor based on a TiO2 thin film on polyimide foil. Sensor Actuat B Chem 2017;240:1058-65.

119. Vidiš M, Shpetnyi IO, Roch T, et al. Flexible hydrogen gas sensor based on a capacitor-like Pt/TiO2/Pt structure on polyimide foil. Int J Hydrog Energy 2021;46:19217-28.

120. Dautel OJ, Wantz G, Flot D, et al. Confined photoactive substructures on a chiral scaffold: the design of an electroluminescent polyimide as material for PLED. J Mater Chem 2005;15:4446.

121. Wu A, Akagi T, Jikei M, et al. New fluorescent polyimides for electroluminescent devices based on 2,5-distyrylpyrazine. Thin Solid Films 1996;273:214-7.

122. Mal’tsev EI, Berendyaev VI, Brusentseva MA, et al. Aromatic polyimides as efficient materials for organic electroluminescent devices. Polym Int 1997;42:404-8.

123. Ng WY, Gong X, Chan WK. Electronic and light-emitting properties of some polyimides based on bis(2,2′:6′,2″-terpyridine) ruthenium(II) complex. Chem Mater 1999;11:1165-70.

124. Mal’tsev EI, Brusentseva MA, Lypenko DA, et al. Electroluminescent properties of anthracene-containing polyimides. Polym Adv Technol 2000;11:325-9.

125. Xu S, Yang M, Wang J, Ye H, Liu X. A novel fluorene-based cardo polyimide containing acridine for electroluminescent devices. Synth Met 2003;132:145-9.

126. Qu L, Tang L, Bei R, et al. Flexible multifunctional aromatic polyimide film: highly efficient photoluminescence, resistive switching characteristic, and electroluminescence. ACS Appl Mater Interfaces 2018;10:11430-5.

127. Zhou Z, Huang W, Long Y, et al. An oxidation-induced fluorescence turn-on approach for non-luminescent flexible polyimide films. J Mater Chem C 2017;5:8545-52.

128. Lim H, Cho W, Ha C, et al. Flexible organic electroluminescent devices based on fluorine-containing colorless polyimide substrates. Adv Mater 2002;14:1275-9.

129. Kim SD, Kim SY, Chung IS. Soluble and transparent polyimides from unsymmetrical diamine containing two trifluoromethyl groups. J Polym Sci Part A Polym Chem 2013;51:4413-22.

130. Zhou Y, Chen G, Zhao H, Song L, Fang X. Synthesis and properties of transparent polyimides derived from trans-1,4-bis(2,3-dicarboxyphenoxy)cyclohexane dianhydride. RSC Adv 2015;5:53926-34.

131. Yi L, Li C, Huang W, Yan D. Soluble polyimides from 4,4′-diaminodiphenyl ether with one or two tert-butyl pedant groups. Polymer 2015;80:67-75.

132. Liu Y, Zhou Z, Qu L, et al. Exceptionally thermostable and soluble aromatic polyimides with special characteristics: intrinsic ultralow dielectric constant, static random access memory behaviors, transparency and fluorescence. Mater Chem Front 2017;1:326-37.

133. Nam K, Jin J, Lee DH, et al. Towards solution-processable, thermally robust, transparent polyimide-chain-end tethered organosilicate nanohybrids. Compos Part B Eng 2019;163:290-6.

134. Ma P, Dai C, Wang H, et al. A review on high temperature resistant polyimide films: Heterocyclic structures and nanocomposites. Compos Commun 2019;16:84-93.

135. Kim SD, Lee S, Heo J, Kim SY, Chung IS. Soluble polyimides with trifluoromethyl pendent groups. Polymer 2013;54:5648-54.

136. Yang Z, Guo H, Kang C, Gao L. Synthesis and characterization of amide-bridged colorless polyimide films with low CTE and high optical performance for flexible OLED displays. Polym Chem 2021;12:5364-76.

137. Wang Y, Chen W. Synthesis, properties, and anti-reflective applications of new colorless polyimide-inorganic hybrid optical materials. Compos Sci Technol 2010;70:769-75.

138. Wang C, Lan Y, Yu W, Li X, Qian Y, Liu H. Preparation of amino-functionalized graphene oxide/polyimide composite films with improved mechanical, thermal and hydrophobic properties. Appl Surf Sci 2016;362:11-9.

139. Tapaswi PK, Choi M, Nagappan S, Ha C. Synthesis and characterization of highly transparent and hydrophobic fluorinated polyimides derived from perfluorodecylthio substituted diamine monomers. J Polym Sci Part A Polym Chem 2015;53:479-88.

140. Shi S, Yao L, Ma P, et al. Recent progress in the high-temperature-resistant PI substrate with low CTE for CIGS thin-film solar cells. Mater Today Energy 2021;20:100640.

141. Lim J, Cho D, Eun K, et al. Mechanical integrity of flexible Ag nanowire network electrodes coated on colorless PI substrates for flexible organic solar cells. Solar Energy Mater Solar Cells 2012;105:69-76.

142. Park J, Heo JH, Park S, et al. Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells. J Power Sources 2017;341:340-7.

143. Zhang G, Chen Q, Xie C, et al. Mechanical-robust and recyclable polyimide substrates coordinated with cyclic Ti-oxo cluster for flexible organic solar cells. NPJ Flex Electron 2022:6.

144. Ishi J, Sunaga T, Nomura M, Kanaya H. Organo-soluble polyimides and their applications to photosensitive cover layer materials in flexible printed circuit boards. J Photopol Sci Technol 2008;21:107-12.

145. Yu H, Shi Y, Yuan B, et al. Recent developments of polyimide materials for lithium-ion battery separators. Ionics 2021;27:907-23.

146. Tan J, Kong L, Qiu Z, Yan Y. Flexible, high-wettability and thermostable separator based on fluorinated polyimide for lithium-ion battery. J Solid State Electrochem 2018;22:3363-73.

147. Lu Z, Sui F, Miao Y, et al. Polyimide separators for rechargeable batteries. J Energy Chem 2021;58:170-97.

148. Ye W, Zhu J, Liao X, et al. Hierarchical three-dimensional micro/nano-architecture of polyaniline nanowires wrapped-on polyimide nanofibers for high performance lithium-ion battery separators. J Power Sources 2015;299:417-24.

149. Lee J, Lee C, Park K, Kim I. Synthesis of an Al2O3-coated polyimide nanofiber mat and its electrochemical characteristics as a separator for lithium ion batteries. J Power Sources 2014;248:1211-7.

150. Sun G, Dong G, Kong L, et al. Robust polyimide nanofibrous membrane with porous-layer-coated morphology by in situ self-bonding and micro-crosslinking for lithium-ion battery separator. Nanoscale 2018;10:22439-47.

151. Zhong G, Wang Y, Wang C, et al. An AlOOH-coated polyimide electrospun fibrous membrane as a high-safety lithium-ion battery separator. Ionics 2019;25:2677-84.

152. Deng J, Cao D, Li L, Chen Y, Zhang G, Yang X. Electrospun nanofiber separator derived from nano-SiO2-modified polyimide with superior mechanical flexibility for high-performance lithium-ion battery. J Mater Sci 2021;56:15215-28.

153. Chen W, Liu Y, Ma Y, Yang W. Improved performance of lithium ion battery separator enabled by co-electrospinnig polyimide/poly(vinylidene fluoride-co-hexafluoropropylene) and the incorporation of TiO2-(2-hydroxyethyl methacrylate). J Power Sources 2015;273:1127-35.

154. Deng Y, Pan Y, Zhang Z, et al. Novel thermotolerant and flexible polyimide aerogel separator achieving advanced lithium-ion batteries. Adv Funct Mater 2022;32:2106176.

155. Kurosawa T, Higashihara T, Ueda M. Polyimide memory: a pithy guideline for future applications. Polym Chem 2013;4:16-30.

156. Ling QD, Chang FC, Song Y, et al. Synthesis and dynamic random access memory behavior of a functional polyimide. J Am Chem Soc 2006;128:8732-3.

157. Hahm SG, Choi S, Hong S, et al. Novel rewritable, non-volatile memory devices based on thermally and dimensionally stable polyimide thin films. Adv Funct Mater 2008;18:3276-82.

158. You N, Chueh C, Liu C, Ueda M, Chen W. Synthesis and memory device characteristics of new sulfur donor containing polyimides. Macromolecules 2009;42:4456-63.

159. Liu Y, Wang K, Huang G, et al. Volatile electrical switching and static random access memory effect in a functional polyimide containing oxadiazole moieties. Chem Mater 2009;21:3391-9.

160. Park S, Kim K, Kim DM, Kwon W, Choi J, Ree M. High temperature polyimide containing anthracene moiety and its structure, interface, and nonvolatile memory behavior. ACS Appl Mater Interfaces 2011;3:765-73.

161. Yen H, Chen C, Liou G. Flexible multi-colored electrochromic and volatile polymer memory devices derived from starburst triarylamine-based electroactive polyimide. Adv Funct Mater 2013;23:5307-16.

162. Sun B, Li X, Feng T, et al. Resistive switching memory performance of two-dimensional polyimide covalent organic framework films. ACS Appl Mater Interfaces 2020;12:51837-45.

163. Zhao J, Zhang M, Wan S, Yang Z, Hwang CS. Highly flexible resistive switching memory based on the electronic switching mechanism in the Al/TiO2/Al/polyimide structure. ACS Appl Mater Interfaces 2018;10:1828-35.

164. Yang Z, Wang Q, Bai Y, Wang T. AO-resistant shape memory polyimide/silica composites with excellent thermal stability and mechanical properties. RSC Adv 2015;5:72971-80.

165. Yoonessi M, Shi Y, Scheiman DA, et al. Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects. ACS Nano 2012;6:7644-55.

166. Wang Q, Bai Y, Chen Y, Ju J, Zheng F, Wang T. High performance shape memory polyimides based on π-π interactions. J Mater Chem A 2015;3:352-9.

167. Ma S, Wang S, Jin S, et al. Construction of high-performance, high-temperature shape memory polyimides bearing pyridine and trifluoromethyl group. Polymer 2020;210:122972.

168. Xiao X, Kong D, Qiu X, et al. Shape-memory polymers with adjustable high glass transition temperatures. Macromolecules 2015;48:3582-9.

169. Huang X, Zhang F, Liu Y, Leng J. Flexible and colorless shape memory polyimide films with high visible light transmittance and high transition temperature. Smart Mater Struct 2019;28:055031.

170. Huang X, Zhang F, Liu Y, Leng J. Active and deformable organic electronic devices based on conductive shape memory polyimide. ACS Appl Mater Interfaces 2020;12:23236-43.

171. Huang X, Zhang F, Leng J. Metal mesh embedded in colorless shape memory polyimide for flexible transparent electric-heater and actuators. Appl Mater Today 2020;21:100797.

172. Yang Z, Zhang Y, Li S, Zhang X, Wang T, Wang Q. Fully closed-loop recyclable thermosetting shape memory polyimide. ACS Sustain Chem Eng 2020;8:18869-78.

173. Narayane D, Taiwade RV, Sahu K. Review on development and performance of shape memory alloy/polyimide thin-film composites. Mater Manuf Process 2022;1:15.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/