REFERENCES

1. Zhu M, He T, Lee C. Technologies toward next generation human machine interfaces: From machine learning enhanced tactile sensing to neuromorphic sensory systems. Appl Phys Rev 2020;7:031305.

2. Cao X, Xiong Y, Sun J, Zhu X, Sun Q, Wang ZL. Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and Artificial Intelligence. Adv Funct Mater 2021;31:2102983.

3. Hua Q, Cui X, Ji K, Wang B, Hu W. Piezotronics enabled artificial intelligence systems. J Phys Mater 2021;4:022003.

4. Yin R, Wang D, Zhao S, Lou Z, Shen G. Wearable sensors-enabled human machine interaction systems: from design to application. Adv Funct Mater 2021;31:2008936.

5. Araromi OA, Graule MA, Dorsey KL, et al. Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature 2020;587:219-24.

6. Lee S, Shi Q, Lee C. From flexible electronics technology in the era of IoT and artificial intelligence toward future implanted body sensor networks. APL Mater 2019;7:031302.

7. Ma M, Zhang Z, Liao Q, et al. Self-powered artificial electronic skin for high-resolution pressure sensing. Nano Energy 2017;32:389-96.

8. Yi Z, Liu Z, Li W, et al. Piezoelectric dynamics of arterial pulse for wearable continuous blood pressure monitoring. Adv Mater 2022;34:e2110291.

9. Zheng Q, Shi B, Li Z, Wang ZL. Recent progress on piezoelectric and triboelectric energy harvesters in biomedical systems. Adv Sci 2017;4:1700029.

10. Park DY, Joe DJ, Kim DH, et al. Self-powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv Mater 2017;29:1702308.

11. Rao Z, Ershad F, Almasri A, Gonzalez L, Wu X, Yu C. Soft electronics for the skin: from health monitors to human-machine interfaces. Adv Mater Technol 2020;5:2000233.

12. Kim N, Lee JM, Moradnia M, et al. Biocompatible composite thin-film wearable piezoelectric pressure sensor for monitoring of physiological and muscle motions. Soft Sci 2022;2:8.

13. Patel S, Ershad F, Zhao M, et al. Wearable electronics for skin wound monitoring and healing. Soft Sci 2022;2:9.

14. Yan C, Deng W, Jin L, et al. Epidermis-inspired ultrathin 3D cellular sensor array for self-powered biomedical monitoring. ACS Appl Mater Interfaces 2018;10:41070-5.

15. Ozioko O, Dahiya R. Smart tactile gloves for haptic interaction, communication, and rehabilitation. Adv Intell Syst 2022;4:2100091.

16. Gao C, Long Z, Zhong T, Liang S, Xing L. A self-powered intelligent glove for real-time human-machine gesture interaction based on piezoelectric effect of T-ZnO/PVDF film. J Phys D Appl Phys 2022;55:194004.

17. Fuh YK, Wang BS. Near field sequentially electrospun three-dimensional piezoelectric fibers arrays for self-powered sensors of human gesture recognition. Nano Energy 2016;30:677-83.

18. Deng C, Tang W, Liu L, Chen B, Li M, Wang ZL. Self-powered insole plantar pressure mapping system. Adv Funct Mater 2018;28:1801606.

19. Zhu M, Shi Q, He T, et al. Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano 2019;13:1940-52.

20. Deng W, Yang T, Jin L, et al. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy 2019;55:516-25.

21. Rao J, Chen Z, Zhao D, Yin Y, Wang X, Yi F. Recent progress in self-powered skin sensors. Sensors 2019;19:2763.

22. Chen Y, Gao Z, Zhang F, Wen Z, Sun X. Recent progress in self-powered multifunctional e-skin for advanced applications. Exploration 2022;2:20210112.

23. Lee S, Hinchet R, Lee Y, et al. Ultrathin nanogenerators as self-powered/active skin sensors for tracking eye ball motion. Adv Funct Mater 2014;24:1163-8.

24. Cha Y, Seo J, Kim J, Park J. Human-computer interface glove using flexible piezoelectric sensors. Smart Mater Struct 2017;26:057002.

25. Wen F, Sun Z, He T, et al. Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Adv Sci 2020;7:2000261.

26. Wang C, Fan Z, Feng K. A self-power flexible piezoelectric sensing system for badminton training monitoring. IEICE Electron Expr 2021;18:20210119-20210119.

27. Zhou P, Zheng Z, Wang B, Guo Y. Self-powered flexible piezoelectric sensors based on self-assembled 10 nm BaTiO3 nanocubes on glass fiber fabric. Nano Energy 2022;99:107400.

28. Liu H, Dong W, Li Y, et al. An epidermal sEMG tattoo-like patch as a new human-machine interface for patients with loss of voice. Microsyst Nanoeng 2020;6:16.

29. Reid T, Gibert J. Inclusion in human-machine interactions. Science 2022;375:149-50.

30. Gao S, Duan J, Kitsos V, Selviah DR, Nathan A. User-oriented piezoelectric force sensing and artificial neural networks in interactive displays. IEEE J Electron Devices Soc 2018;6:766-73.

31. Zhang H, Tian G, Xiong D, et al. Carrier concentration-dependent interface engineering for high-performance zinc oxide piezoelectric device. J Colloid Interface Sci 2023;629:534-40.

32. Gao Y, Yan C, Huang H, et al. Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv Funct Mater 2020;30:1909603.

33. Li J, Fang L, Sun B, et al. Recent progress in flexible and stretchable piezoresistive sensors and their applications. J Electrochem Soc 2020;167:037561.

34. Li J, Fang L, Sun B, Li X, Kang SH. Fingerprint-enhanced capacitive-piezoelectric flexible sensing skin to discriminate static and dynamic tactile stimuli. Adv Intell Syst 2019;1:1900051.

35. Cotton DPJ, Graz IM, Lacour SP. A multifunctional capacitive sensor for stretchable electronic skins. IEEE Sensors J 2009;9:2008-9.

36. Dong K, Peng X, Wang ZL. Fiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and Artificial Intelligence. Adv Mater 2020;32:e1902549.

37. Zhu J, Zhou C, Zhang M. Recent progress in flexible tactile sensor systems: from design to application. Soft Sci 2021;1:3.

38. Zhang Z, Wen F, Sun Z, Guo X, He T, Lee C. Artificial intelligence-enabled sensing technologies in the 5G/internet of things era: from virtual reality/augmented reality to the digital twin. Adv Intell Syst 2022;4:2100228.

39. Wang W, Tian Y, Wang X, et al. Ethanol sensing properties of porous ZnO spheres via hydrothermal route. J Mater Sci 2013;48:3232-8.

40. Song K, Kim SH, Jin S, et al. Pneumatic actuator and flexible piezoelectric sensor for soft virtual reality glove system. Sci Rep 2019;9:8988.

41. Yu X, Xie Z, Yu Y, et al. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature 2019;575:473-9.

42. Hwang G, Kim Y, Lee J, et al. Self-powered deep brain stimulation via a flexible PIMNT energy harvester. Energy Environ Sci 2015;8:2677-84.

43. Qiu Y, Tian Y, Sun S, et al. Bioinspired, multifunctional dual-mode pressure sensors as electronic skin for decoding complex loading processes and human motions. Nano Energy 2020;78:105337.

44. Meier M, Streli P, Fender A, et al. TapID: rapid touch interaction in virtual reality using wearable sensing. IEEE VR 2021:519-528.

45. Lu Z, Zhu Y, Jia C, et al. A self-powered portable flexible sensor of monitoring speed skating techniques. Biosensors 2021;11:108.

46. Han JH, Bae KM, Hong SK, et al. Machine learning-based self-powered acoustic sensor for speaker recognition. Nano Energy 2018;53:658-65.

47. Sun Z, Zhu M, Chen Z, et al. Haptic-feedback ring enabled human-machine interface (HMI) aiming at immersive virtual reality experience. In 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers); 2021. pp. 333-6.

48. Zhu G, Wang AC, Liu Y, Zhou Y, Wang ZL. Functional electrical stimulation by nanogenerator with 58 V output voltage. Nano Lett 2012;12:3086-90.

49. Charalambides A, Bergbreiter S. Rapid manufacturing of mechanoreceptive skins for slip detection in robotic grasping. Adv Mater Technol 2017;2:1600188.

50. Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 2013;5:263-75.

51. Yang P, Chou S, Hsu C, et al. Tin disulfide piezoelectric nanogenerators for biomechanical energy harvesting and intelligent human-robot interface applications. Nano Energy 2020;75:104879.

52. Ilyas MA, Swingler J. Piezoelectric energy harvesting from raindrop impacts. Energy 2015;90:796-806.

53. Ahn JH, Lee MJ, Heo H, et al. Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano Lett 2015;15:3703-8.

54. Lim S, Son D, Kim J, et al. Transparent and stretchable interactive human machine interface based on patterned graphene heterostructures. Adv Funct Mater 2015;25:375-83.

55. Lin W, Wang B, Peng G, Shan Y, Hu H, Yang Z. Skin-inspired piezoelectric tactile sensor array with crosstalk-free row+column electrodes for spatiotemporally distinguishing diverse stimuli. Adv Sci 2021;8:2002817.

56. Kim K, Kim J, Choi J, Kim J, Lee S. Depth camera-based 3D hand gesture controls with immersive tactile feedback for natural mid-air gesture interactions. Sensors 2015;15:1022-46.

57. Heng W, Solomon S, Gao W. Flexible electronics and devices as human-machine interfaces for medical robotics. Adv Mater 2022;34:e2107902.

58. Haroun A, Le X, Gao S, et al. Progress in micro/nano sensors and nanoenergy for future AIoT-based smart home applications. Nano Express 2021;2:022005.

59. Dong B, Shi Q, Yang Y, Wen F, Zhang Z, Lee C. Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy 2021;79:105414.

60. Lee WH, Chiu CY. Design and implementation of a smart traffic signal control system for smart city applications. Sensors 2020;20:508.

61. Gao W, Emaminejad S, Nyein HYY, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016;529:509-14.

62. Dai Y, Chen J, Tian W, Xu L, Gao S. A PVDF/Au/PEN multifunctional flexible human-machine interface for multidimensional sensing and energy harvesting for the internet of things. IEEE Sensors J 2020;20:7556-68.

63. Song GJ, Cho JY, Kim K, et al. Development of a pavement block piezoelectric energy harvester for self-powered walkway applications. Appl Energy 2019;256:113916.

64. Kim JH, Cho JY, Jhun JP, et al. Development of a hybrid type smart pen piezoelectric energy harvester for an IoT platform. Energy 2021;222:119845.

65. Lv P, Qian J, Yang C, et al. Flexible all-inorganic Sm-doped PMN-PT film with ultrahigh piezoelectric coefficient for mechanical energy harvesting, motion sensing, and human-machine interaction. Nano Energy 2022;97:107182.

66. Su Y, Li W, Yuan L, et al. Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy 2021;89:106321.

67. Kim K, Cho JY, Jabbar H, et al. Optimized composite piezoelectric energy harvesting floor tile for smart home energy management. Energy Convers Manag 2018;171:31-7.

68. Le X, Shi Q, Vachon P, Ng EJ, Lee C. Piezoelectric MEMS-evolution from sensing technology to diversified applications in the 5G/Internet of Things (IoT) era. J Micromech Microeng 2022;32:014005.

69. Liu L, Guo X, Liu W, Lee C. Recent progress in the energy harvesting technology-from self-powered sensors to self-sustained IoT, and new applications. Nanomaterials 2021;11:2975.

70. Jordan MI, Mitchell TM. Machine learning: trends, perspectives, and prospects. Science 2015;349:255-60.

71. Jian G, Jiao Y, Meng Q, Shao H, Wang F, Wei Z. 3D BaTiO3 flower based polymer composites exhibiting excellent piezoelectric energy harvesting properties. Adv Mater Interfaces 2020;7:2000484.

72. Zhao C, Jia C, Zhu Y, Zhao T. An effective self-powered piezoelectric sensor for monitoring basketball skills. Sensors 2021;21:5144.

73. Liu W, Long Z, Yang G, Xing L. A self-powered wearable motion sensor for monitoring volleyball skill and building big sports data. Biosensors 2022;12:60.

74. Tian G, Deng W, Gao Y, et al. Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training. Nano Energy 2019;59:574-81.

75. Yao D, Cui H, Hensleigh R, et al. Achieving the upper bound of piezoelectric response in tunable, wearable 3D printed nanocomposites. Adv Funct Mater 2019;29:1903866.

76. Mao Y, Zhu Y, Zhao T, et al. A portable and flexible self-powered multifunctional sensor for real-time monitoring in swimming. Biosensors 2021;11:147.

77. Han JH, Kwak J, Joe DJ, et al. Basilar membrane-inspired self-powered acoustic sensor enabled by highly sensitive multi tunable frequency band. Nano Energy 2018;53:198-205.

78. Viola G, Chang J, Maltby T, et al. Bioinspired multiresonant acoustic devices based on electrospun piezoelectric polymeric nanofibers. ACS Appl Mater Interfaces 2020;12:34643-57.

79. Wang J, He T, Lee C. Development of neural interfaces and energy harvesters towards self-powered implantable systems for healthcare monitoring and rehabilitation purposes. Nano Energy 2019;65:104039.

80. Shi Q, Wang T, Lee C. MEMS based broadband piezoelectric ultrasonic energy harvester (PUEH) for enabling self-powered implantable biomedical devices. Sci Rep 2016;6:24946.

81. Jiang L, Yang Y, Chen R, et al. Ultrasound-induced wireless energy harvesting for potential retinal electrical stimulation application. Adv Funct Mater 2019;29:1902522.

82. Zhang T, Liang H, Wang Z, et al. Piezoelectric ultrasound energy-harvesting device for deep brain stimulation and analgesia applications. Sci Adv 2022;8:eabk0159.

83. Jiang L, Lu G, Zeng Y, et al. Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses. Nat Commun 2022;13:3853.

84. Piech DK, Johnson BC, Shen K, et al. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nat Biomed Eng 2020;4:207-22.

85. Wang HS, Hong SK, Han JH, et al. Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci Adv 2021;7:eabe5683.

86. Kyamakya K, Al-Machot F, Haj Mosa A, Bouchachia H, Chedjou JC, Bagula A. Emotion and stress recognition related sensors and machine learning technologies. Sensors 2021;21:2273.

87. Qi Y, Jia W, Gao S. Emotion recognition based on piezoelectric keystroke dynamics and Machine Learning. In 2021 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS); 2021. pp. 1-4.

88. Gao S, Dai Y, Kitsos V, Wan B, Qu X. High three-dimensional detection accuracy in piezoelectric-based touch panel in interactive displays by optimized artificial neural networks. Sensors 2019;19:753.

89. Gao S, Guo R, Shao M, Xu L. A touch orientation classification-based force-voltage responsivity stabilization method for piezoelectric force sensing in interactive displays. IEEE Sensors J 2020;20:8147-54.

90. Zhou Z, Chen K, Li X, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat Electron 2020;3:571-8.

91. Jung YH, Hong SK, Wang HS, et al. Flexible piezoelectric acoustic sensors and machine learning for speech processing. Adv Mater 2020;32:e1904020.

92. Novoselov S, Kudashev O, Shchemelinin V, et al. Deep CNN based feature extractor for text-prompted speaker recognition. In 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2018. pp. 5334-8.

93. Wang M, Luo Y, Wang T, et al. artificial skin perception. Adv Mater 2021;33:e2003014.

94. Chung J, Lim H, Lim M, Cha Y. Object classification based on piezoelectric actuator-sensor pair on robot hand using neural network. Smart Mater Struct 2020;29:105020.

95. Jia W, Qi Y, Huang A, Zhou F, Gao S. High security user authentication based on piezoelectric keystroke dynamics applying to multiple emotional responses. IEEE Sensors J 2022;22:2814-22.

96. Jeong YC, Lee HE, Shin A, Kim DG, Lee KJ, Kim D. Progress in brain-compatible interfaces with soft nanomaterials. Adv Mater 2020;32:e1907522.

97. Liu Y, Yiu C, Song Z, et al. Electronic skin as wireless human-machine interfaces for robotic VR. Sci Adv 2022;8:eabl6700.

98. Zhu G, Zeng Z, Zhang L, et al. Piezoelectricity in β-phase PVDF crystals: a molecular simulation study. Comput Mater Sci 2008;44:224-9.

99. Zhang J, Wang C, Bowen C. Piezoelectric effects and electromechanical theories at the nanoscale. Nanoscale 2014;6:13314-27.

100. Zhang M, Zhang AM, Chen Y, et al. Polyoxovanadate-polymer hybrid electrolyte in solid state batteries. Energy Stor Mater 2020;29:172-81.

101. Zhang L, Gui J, Wu Z, et al. Enhanced performance of piezoelectric nanogenerator based on aligned nanofibers and three-dimensional interdigital electrodes. Nano Energy 2019;65:103924.

102. Chu Y, Zhong J, Liu H, et al. Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system. Adv Funct Mater 2018;28:1803413.

103. Han M, Wang H, Yang Y, et al. Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat Electron 2019;2:26-35.

104. Liu X, Wei Y, Qiu Y. Advanced flexible skin-like pressure and strain sensors for human health monitoring. Micromachines 2021;12:695.

105. Jella V, Ippili S, Eom J, et al. A comprehensive review of flexible piezoelectric generators based on organic-inorganic metal halide perovskites. Nano Energy 2019;57:74-93.

106. Liu H, Zhong J, Lee C, Lee S, Lin L. A comprehensive review on piezoelectric energy harvesting technology: materials, mechanisms, and applications. Appl Phys Rev 2018;5:041306.

107. Kang S, Kim SH, Lee HB, et al. High-power energy harvesting and imperceptible pulse sensing through peapod-inspired hierarchically designed piezoelectric nanofibers. Nano Energy 2022;99:107386.

108. Mahapatra SD, Mohapatra PC, Aria AI, et al. Piezoelectric materials for energy harvesting and sensing applications: roadmap for future smart materials. Adv Sci 2021;8:e2100864.

109. Yi F, Ren H, Shan J, Sun X, Wei D, Liu Z. Wearable energy sources based on 2D materials. Chem Soc Rev 2018;47:3152-88.

110. Gao Z, Zhou J, Gu Y, et al. Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor. J Appl Phys 2009;105:113707.

111. Huang X, Wang Y, Zhang X. Ultrarobust, hierarchically anisotropic structured piezoelectric nanogenerators for self-powered sensing. Nano Energy 2022;99:107379.

112. Chen G, Xiao X, Zhao X, Tat T, Bick M, Chen J. Electronic textiles for wearable point-of-care systems. Chem Rev 2022;122:3259-91.

113. Deng W, Zhou Y, Libanori A, Chen G, Yang W, Chen J. Piezoelectric nanogenerators for personalized healthcare. Chem Soc Rev 2022;51:3380-435.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/