REFERENCES

1. Nuzzo RG, Allara DL. Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc 1983;105:4481-3.

2. Bain CD, Troughton EB, Tao YT, Evall J, Whitesides GM, Nuzzo RG. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J Am Chem Soc 1989;111:321-35.

3. Nuzzo RG, Zegarski BR, Dubois LH. Fundamental studies of the chemisorption of organosulfur compounds on gold(111). Implications for molecular self-assembly on gold surfaces. J Am Chem Soc 1987;109:733-40.

4. Kim SH, Asay DB, Dugger MT. Nanotribology and MEMS. Nano Today 2007;2:22-9.

5. Nuzzo RG. Biomaterials: Stable antifouling surfaces. Nat Mater 2003;2:207-8.

6. Ruiz S, Chen CS. Microcontact printing: a tool to pattern. Soft Matter 2007;3:168-77.

7. Wilbur JL, Kumar A, Kim E, Whitesides GM. Microfabrication by microcontact printing of self-assembled monolayers. Adv Mater 1994;6:600-4.

8. Doms M, Feindt H, Kuipers WJ, et al. Hydrophobic coatings for MEMS applications. J Micromech Microeng 2008;18:055030.

9. Yu T, Marquez MD, Zenasni O, Lee TR. Mimicking polymer surfaces using cyclohexyl- and perfluorocyclohexyl-terminated self-assembled monolayers. ACS Appl Nano Mater 2019;2:5809-16.

10. Maboudian R, Ashurst W, Carraro C. Self-assembled monolayers as anti-stiction coatings for MEMS: characteristics and recent developments. Sensors and Actuators A: Physical 2000;82:219-23.

11. Kasai T, Bhushan B, Kulik G, Barbieri L, Hoffmann P. Micro∕nanotribological study of perfluorosilane SAMs for antistiction and low wear. J Vac Sci Technol B 2005;23:995.

12. Bhushan B, Kasai T, Kulik G, Barbieri L, Hoffmann P. AFM study of perfluoroalkylsilane and alkylsilane self-assembled monolayers for anti-stiction in MEMS/NEMS. Ultramicroscopy 2005;105:176-88.

13. Kim S, Yoo H. Self-assembled monolayers: versatile uses in electronic devices from gate dielectrics, dopants, and biosensing linkers. Micromachines (Basel) 2021;12:565.

14. Grönbeck H, Curioni A, Andreoni W. Thiols and disulfides on the Au(111) surface:  the headgroup - gold interaction. J Am Chem Soc 2000;122:3839-42.

15. Crudden CM, Horton JH, Ebralidze II, et al. Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nat Chem 2014;6:409-14.

16. Onclin S, Ravoo BJ, Reinhoudt DN. Engineering silicon oxide surfaces using self-assembled monolayers. Angew Chem Int Ed Engl 2005;44:6282-304.

17. Delamarche E, Michel B, Kang H, Gerber C. Thermal stability of self-assembled monolayers. Langmuir 1994;10:4103-8.

18. Ulman A. Formation and structure of self-assembled monolayers. Chem Rev 1996;96:1533-54.

19. Allara DL, Parikh AN, Rondelez F. Evidence for a unique chain organization in long chain silane monolayers deposited on two widely different solid substrates. Langmuir 1995;11:2357-60.

20. Srisombat L, Jamison AC, Lee TR. Stability: a key issue for self-assembled monolayers on gold as thin-film coatings and nanoparticle protectants. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011;390:1-19.

21. Geyer W, Stadler V, Eck W, Zharnikov M, Gölzhäuser A, Grunze M. Electron-induced crosslinking of aromatic self-assembled monolayers: negative resists for nanolithography. Appl Phys Lett 1999;75:2401-3.

22. Angelova P, Vieker H, Weber NE, et al. A universal scheme to convert aromatic molecular monolayers into functional carbon nanomembranes. ACS Nano 2013;7:6489-97.

23. Turchanin A, Gölzhäuser A. Carbon nanomembranes from self-assembled monolayers: Functional surfaces without bulk. Progress in Surface Science 2012;87:108-62.

24. Schmid M, Wan X, Asyuda A, Zharnikov M. Modification of self-assembled monolayers by electron irradiation: the effect of primary energy (10-500 eV). J Phys Chem C 2019;123:28301-9.

25. Tong Y, Berdiyorov GR, Sinopoli A, Madjet ME, Esaulov VA, Hamoudi H. An estimation on the mechanical stabilities of SAMs by low energy Ar+ cluster ion collision. Sci Rep 2021;11:12772.

26. Eck W, Stadler V, Geyer W, Zharnikov M, Gölzhäuser A, Grunze M. Generation of surface amino groups on aromatic self-assembled monolayers by low energy electron beams - a first step towards chemical lithography. Adv Mater 2000;12:805-8.

27. Meyerbröker N, Zharnikov M. Modification of nitrile-terminated biphenylthiol self-assembled monolayers by electron irradiation and related applications. Langmuir 2012;28:9583-92.

28. Turchanin A, Käfer D, El-Desawy M, Wöll C, Witte G, Gölzhäuser A. Molecular mechanisms of electron-induced cross-linking in aromatic SAMs. Langmuir 2009;25:7342-52.

29. Houplin J, Dablemont C, Sala L, Lafosse A, Amiaud L. Electron processing at 50 eV of terphenylthiol self-assembled monolayers: contributions of primary and secondary electrons. Langmuir 2015;31:13528-34.

30. Amiaud L, Houplin J, Bourdier M, et al. Low-energy electron induced resonant loss of aromaticity: consequences on cross-linking in terphenylthiol SAMs. Phys Chem Chem Phys 2014;16:1050-9.

31. Luo YR. Comprehensive handbook of chemical bond energies. New York: CRC Press; 2007. p. 50.

32. Zharnikov M, Grunze M. Modification of thiol-derived self-assembling monolayers by electron and x-ray irradiation: scientific and lithographic aspects. J Vac Sci Technol B 2002;20:1793.

33. Zhang X, Vieker H, Beyer A, Gölzhäuser A. Fabrication of carbon nanomembranes by helium ion beam lithography. Beilstein J Nanotechnol 2014;5:188-94.

34. Turchanin A, Schnietz M, El-Desawy M, Solak HH, David C, Gölzhäuser A. Fabrication of molecular nanotemplates in self-assembled monolayers by extreme-ultraviolet-induced chemical lithography. Small 2007;3:2114-9.

35. Cabrera-Sanfelix P, Arnau A, Sánchez-Portal D. First-principles investigation of electron-induced cross-linking of aromatic self-assembled monolayers on Au(111). Phys Chem Chem Phys 2010;12:1578-84.

36. Koch S, Kaiser CD, Penner P, et al. Amplified cross-linking efficiency of self-assembled monolayers through targeted dissociative electron attachment for the production of carbon nanomembranes. Beilstein J Nanotechnol 2017;8:2562-71.

37. Yildirim C, Füser M, Terfort A, Zharnikov M. Modification of aromatic self-assembled monolayers by electron irradiation: basic processes and related applications. J Phys Chem C 2017;121:567-76.

38. Mrugalla A, Schnack J. Classical molecular dynamics investigations of biphenyl-based carbon nanomembranes. Beilstein J Nanotechnol 2014;5:865-71.

39. Ishida T, Hara M, Kojima I, et al. High resolution X-ray photoelectron spectroscopy measurements of octadecanethiol self-assembled monolayers on Au(111). Langmuir 1998;14:2092-6.

40. Smith BW. Optical projection lithography. In Feldman M. Ed. Nanolithography. New York: Woodhead Publishing; 2014. p. 1-41.

41. Altissimo M. E-beam lithography for micro-nanofabrication. Biomicrofluidics 2010;4:026503.

42. Groves TR. Electron beam lithography. In: Feldman M. Ed. Nanolithography. New York: Woodhead Publishing; 2014. P. 80-115.

43. Tseng A, Kuan Chen, Chen C, Ma K. Electron beam lithography in nanoscale fabrication: recent development. IEEE Trans Electron Packag Manufact 2003;26:141-9.

44. Gölzhäuser A, Eck W, Geyer W, et al. Chemical nanolithography with electron beams. Adv Mater ;13:803-6.

45. Gölzhäuser A, Geyer W, Stadler V, et al. Nanoscale patterning of self-assembled monolayers with electrons. J Vac Sci Technol B 2000;18:3414.

46. Barriet D. Fluorinated self-assembled monolayers: composition, structure and interfacial properties. Current Opinion in Colloid & Interface Science 2003;8:236-42.

47. Frey S, Heister K, Zharnikov M, Grunze M. Modification of semifluorinated alkanethiolate monolayers by low energy electron irradiation. Phys Chem Chem Phys ;2:1979-87.

48. Chesneau F, Hamoudi H, Schüpbach B, Terfort A, Zharnikov M. Modification of self-assembled monolayers of perfluoroterphenyl-substituted alkanethiols by low-energy electrons. J Phys Chem C 2011;115:4773-82.

49. Frese N, Scherr J, Beyer A, et al. Multicomponent patterned ultrathin carbon nanomembranes by laser ablation. Applied Surface Science 2018;427:126-30.

50. Turchanin A, El-desawy M, Gölzhäuser A. High thermal stability of cross-linked aromatic self-assembled monolayers: nanopatterning via selective thermal desorption. Appl Phys Lett 2007;90:053102.

51. Beyer A, Godt A, Amin I, et al. Fully cross-linked and chemically patterned self-assembled monolayers. Phys Chem Chem Phys 2008;10:7233-8.

52. Tran KT, Nguyen TD. Lithography-based methods to manufacture biomaterials at small scales. Journal of Science: Advanced Materials and Devices 2017;2:1-14.

53. Turchanin A, Gölzhäuser A. Carbon nanomembranes. Adv Mater 2016;28:6075-103.

54. Kankate L, Aguf A, Großmann H, et al. Vapor phase exchange of self-assembled monolayers for engineering of biofunctional surfaces. Langmuir 2017;33:3847-54.

55. Turchanin A, Tinazli A, El-desawy M, et al. Molecular self-assembly, chemical lithography, and biochemical tweezers: a path for the fabrication of functional nanometer-scale protein arrays. Adv Mater 2008;20:471-7.

56. Meyerbröker N, Li Z, Eck W, Zharnikov M. Biocompatible nanomembranes based on pegylation of cross-linked self-assembled monolayers. Chem Mater 2012;24:2965-72.

57. Chesneau F, Terfort A, Zharnikov M. Nickel deposition on fluorinated, aromatic self-assembled monolayers: chemically induced cross-linking as a tool for the preparation of well-defined top metal films. J Phys Chem C 2014;118:11763-73.

58. Kuang J, Messersmith PB. Universal surface-initiated polymerization of antifouling zwitterionic brushes using a mussel-mimetic peptide initiator. Langmuir 2012;28:7258-66.

59. Schmelmer U, Jordan R, Geyer W, et al. Surface-initiated polymerization on self-assembled monolayers: amplification of patterns on the micrometer and nanometer scale. Angew Chem Int Ed Engl 2003;42:559-63.

60. Schmelmer U, Paul A, Küller A, et al. Nanostructured polymer brushes. Small 2007;3:459-65.

61. Amin I, Steenackers M, Zhang N, et al. Polymer carpets. Small 2010;6:1623-30.

62. Eck W, Küller A, Grunze M, Völkel B, Gölzhäuser A. Freestanding nanosheets from crosslinked biphenyl self-assembled monolayers. Adv Mater 2005;17:2583-7.

63. Angelova P, Gölzhäuser A. Carbon nanomembranes. Physical Sciences Reviews 2017:2.

64. Schnietz M, Turchanin A, Nottbohm CT, et al. Chemically functionalized carbon nanosieves with 1-nm thickness. Small 2009;5:2651-5.

65. Kruk M, Neumann C, Frey M, Kozieł K, Turchanin A, Cyganik P. Odd-even effect in electron beam irradiation of hybrid aromatic-aliphatic self-assembled monolayers of fatty acid. J Phys Chem C 2021;125:9310-8.

66. Zheng Z, Zhang X, Neumann C, et al. Hybrid van der Waals heterostructures of zero-dimensional and two-dimensional materials. Nanoscale 2015;7:13393-7.

67. Turchanin A. Graphene growth by conversion of aromatic self-assembled monolayers. ANNALEN DER PHYSIK 2017;529:1700168.

68. Yang Y, Dementyev P, Biere N, et al. Rapid water permeation through carbon nanomembranes with sub-nanometer channels. ACS Nano 2018;12:4695-701.

69. Zhang X, Marschewski E, Penner P, et al. Large-area all-carbon nanocapacitors from graphene and carbon nanomembranes. ACS Nano 2018;12:10301-9.

70. Woszczyna M, Winter A, Grothe M, et al. All-carbon vertical van der Waals heterostructures: non-destructive functionalization of graphene for electronic applications. Adv Mater 2014;26:4831-7.

71. Matei DG, Weber NE, Kurasch S, et al. Functional single-layer graphene sheets from aromatic monolayers. Adv Mater 2013;25:4146-51.

72. Weber NE, Wundrack S, Stosch R, Turchanin A. Direct growth of patterned graphene. Small 2016;12:1440-5.

73. Turchanin A, Beyer A, Nottbohm CT, et al. One nanometer thin carbon nanosheets with tunable conductivity and stiffness. Adv Mater 2009;21:1233-7.

74. Kunjuzwa N, Nthunya LN, Nxumalo EN, Mhlanga SD. .

75. Araújo LCA, Costa LP. Functionalized carbon nano-membranes based devices for water purification technology. In: Environmental Applications of Carbon Nanomaterials-Based Devices. 2021. p. 331-46.

76. Dementyev P, Wilke T, Naberezhnyi D, Emmrich D, Gölzhäuser A. Vapour permeation measurements with free-standing nanomembranes. Phys Chem Chem Phys 2019;21:15471-7.

77. Yang Y, Hillmann R, Qi Y, et al. Ultrahigh ionic exclusion through carbon nanomembranes. Adv Mater 2020;32:e1907850.

78. Weston M, Tjandra AD, Chandrawati R. Tuning chromatic response, sensitivity, and specificity of polydiacetylene-based sensors. Polym Chem 2020;11:166-83.

79. Reppy MA, Pindzola BA. Biosensing with polydiacetylene materials: structures, optical properties and applications. Chem Commun (Camb) 2007;42:4317-38.

80. Batchelder DN, Evans SD, Freeman TL, Haeussling L, Ringsdorf H, Wolf H. Self-assembled monolayers containing polydiacetylenes. J Am Chem Soc 1994;116:1050-3.

81. Cai M, Mowery MD, Menzel H, Evans CE. Fabrication of extended conjugation length polymers within diacetylene monolayers on au surfaces:  influence of UV exposure time. Langmuir 1999;15:1215-22.

82. Takajo D, Sudoh K. Mechanism of chain polymerization in self-assembled monolayers of diacetylene on the graphite surface. Langmuir 2019;35:2123-8.

83. Wu F, Bhupathiraju NVSDK, Brown A, Liu Z, Drain CM, Batteas JD. Mechanical and electronic properties of diacetylene and polydiacetylene self-assembled monolayers on Au(111). J Phys Chem C 2020;124:4081-9.

84. Menzel H, Mowery MD, Cai M, Evans CE. Vertical positioning of internal molecular scaffolding within a single molecular layer. J Phys Chem B 1998;102:9550-6.

85. Kim T, Crooks RM, Tsen M, Sun L. Polymeric self-assembled monolayers. 2. Synthesis and characterization of self-assembled polydiacetylene mono- and multilayers. J Am Chem Soc 1995;117:3963-7.

86. Kim T, Chan KC, Crooks RM. Polymeric self-assembled monolayers. 4. chemical, electrochemical, and thermal stability of ω-functionalized, self-assembled diacetylenic and polydiacetylenic monolayers. J Am Chem Soc 1997;119:189-93.

87. Ford JF, Vickers TJ, Mann CK, Schlenoff JB. Polymerization of a thiol-bound styrene monolayer. Langmuir 1996;12:1944-6.

88. Chan KC, Kim T, Schoer JK, Crooks RM. Polymeric self-assembled monolayers. 3. Pattern transfer by use of photolithography, electrochemical methods, and an ultrathin, self-assembled diacetylenic resist. J Am Chem Soc 1995;117:5875-6.

89. Yang W, Ella-Menye JR, Liu S, et al. Cross-linked carboxybetaine SAMs enable nanoparticles with remarkable stability in complex media. Langmuir 2014;30:2522-9.

90. Chien HW, Cheng PH, Chen SY, Yu J, Tsai WB. Low-fouling and functional poly(carboxybetaine) coating via a photo-crosslinking process. Biomater Sci 2017;5:523-31.

91. Wang Y, Sun Y, Ding X, Liang J, Cao X, Tian Z. A combined electro- and photo-chemical approach to repeatedly fabricate two-dimensional molecular assemblies. Electrochimica Acta 2017;246:823-9.

92. Olsen C, Rowntree PA. Bond-selective dissociation of alkanethiol based self-assembled monolayers adsorbed on gold substrates, using low-energy electron beams. The Journal of Chemical Physics 1998;108:3750-64.

93. Zharnikov M, Geyer W, Gölzhäuser A, Frey S, Grunze M. Modification of alkanethiolate monolayers on Au-substrate by low energy electron irradiation: Alkyl chains and the S/Au interface. Phys Chem Chem Phys ;1:3163-71.

94. Zharnikov M, Frey S, Heister K, Grunze M. Modification of alkanethiolate monolayers by low energy electron irradiation:  dependence on the substrate material and on the length and isotopic composition of the alkyl chains. Langmuir 2000;16:2697-705.

95. Huels MA, Dugal P, Sanche L. Degradation of functionalized alkanethiolate monolayers by 0-18 eV electrons. The Journal of Chemical Physics 2003;118:11168-78.

96. Waske PA, Meyerbröker N, Eck W, Zharnikov M. Self-assembled monolayers of cyclic aliphatic thiols and their reaction toward electron irradiation. J Phys Chem C 2012;116:13559-68.

97. Saha S, Bruening ML, Baker GL. Facile synthesis of thick films of poly(methyl methacrylate), poly(styrene), and poly(vinyl pyridine) from Au surfaces. ACS Appl Mater Interfaces 2011;3:3042-8.

98. Tkachev M, Anand-kumar T, Bitler A, Guliamov R, Naaman R. Enabling long-term operation of GaAs-based sensors. ENG 2013;05:1-12.

99. Hou T, Greenlief CM, Keller SW, Nelen L, Kauffman JF. Passivation of GaAs (100) with an adhesion promoting self-assembled monolayer. Chem Mater 1997;9:3181-6.

100. Masi G, Balbo A, Esvan J, et al. X-ray photoelectron spectroscopy as a tool to investigate silane-based coatings for the protection of outdoor bronze: the role of alloying elements. Applied Surface Science 2018;433:468-79.

101. Sui W, Zhao W, Zhang X, Peng S, Zeng Z, Xue Q. Comparative anti-corrosion properties of alkylthiols SAMs and mercapto functional silica sol-gel coatings on copper surface in sodium chloride solution. J Sol-Gel Sci Technol 2016;80:567-78.

102. Sharma H, Moumanis K, Dubowski JJ. pH-dependent photocorrosion of GaAs/AlGaAs quantum well microstructures. J Phys Chem C 2016;120:26129-37.

103. Savard S, Blanchard L, Léonard J, Prud’homme RE. Hydrolysis and condensation of silanes in aqueous solutions: hydrolysis and condensation of silanes in aqueous solutions. Polym Compos 1984;5:242-9.

104. Itoh M, Nishihara H, Aramaki K. A chemical modification of alkanethiol Self-assembled monolayers with alkyltrichlorosilanes for the protection of copper against corrosion. J Electrochem Soc 1994;141:2018-23.

105. .

106. Asadirad M, Rathi M, Pouladi S, et al. .

107. Green MA, Hishikawa Y, Dunlop ED, Levi DH, Hohl-ebinger J, Ho-baillie AW. Solar cell efficiency tables (version 51). Prog Photovolt Res Appl 2018;26:3-12.

108. Sheldon MT, Eisler CN, Atwater HA. GaAs Passivation with trioctylphosphine sulfide for enhanced solar cell efficiency and durability. Adv Energy Mater 2012;2:339-44.

109. Carpenter MS, Melloch MR, Lundstrom MS, Tobin SP. Effects of Na2S and (NH4)2S edge passivation treatments on the dark current-voltage characteristics of GaAs. pn ;52:2157-9.

110. Sheen CW, Shi JX, Maartensson J, Parikh AN, Allara DL. A new class of organized self-assembled monolayers: alkane thiols on gallium arsenide(100). J Am Chem Soc 1992;114:1514-5.

111. Kirchner C, George M, Stein B, Parak W, Gaub H, Seitz M. Corrosion protection and long-term chemical functionalization of gallium arsenide in an aqueous environment. Adv Funct Mater ;12:266.

112. Carey RI, Folkers JP, Whitesides GM. Self-assembled monolayers containing .omega.-mercaptoalkyl boronic acids adsorbed onto gold form a highly cross-linked, thermally stable borate glass surface. Langmuir 1994;10:2228-34.

113. Fabre B, Hauquier F. Boronic acid-functionalized oxide-free silicon surfaces for the electrochemical sensing of dopamine. Langmuir 2017;33:8693-9.

114. Lenk TJ, Hallmark VM, Hoffmann CL, et al. Structural investigation of molecular organization in self-assembled monolayers of a semifluorinated amidethiol. Langmuir 1994;10:4610-7.

115. Tam-chang S, Biebuyck HA, Whitesides GM, Jeon N, Nuzzo RG. Self-assembled monolayers on gold generated from alkanethiols with the structure RNHCOCH2SH. Langmuir 1995;11:4371-82.

116. Sastry M, Patil V, Mayya KS. Selective binding of divalent cations at the surface of self-assembled monolayers of an aromatic bifunctional molecule studied on a quartz crystal microbalance. J Phys Chem B 1997;101:1167-70.

117. Kim JH, Shin HS, Kim SB, Hasegawa T. Hydrogen-bonding networks of dialkyl disulfides containing the urea moiety in self-assembled monolayers. Langmuir 2004;20:1674-9.

118. Thomas JC, Goronzy DP, Dragomiretskiy K, et al. Mapping buried hydrogen-bonding networks. ACS Nano 2016;10:5446-51.

119. Valiokas R, Östblom M, Svedhem S, Svensson SCT, Liedberg B. Thermal stability of self-assembled monolayers:  influence of lateral hydrogen bonding. J Phys Chem B 2002;106:10401-9.

120. Boal AK, Rotello VM. Intra - and inter monolayer hydrogen bonding in amide-functionalized alkanethiol self-assembled monolayers on gold nanoparticles. Langmuir 2000;16:9527-32.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/