REFERENCES

1. Zhou L, Fu J, He Y. A review of 3D printing technologies for soft polymer materials. Adv Funct Mater 2020;30:2000187.

2. Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D. Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos B Eng 2018;143:172-96.

3. Chen Z, Turng L. A review of current developments in process and quality control for injection molding. Adv Polym Technol 2005;24:165-82.

4. Gordon S, Hillery MT. A review of the cutting of composite materials. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 2003;217:35-45.

5. Xia Y, Whitesides GM. Soft lithography. Angew Chem Int Ed Engl 1998;37:550-75.

6. Keneth E, Kamyshny A, Totaro M, Beccai L, Magdassi S. 3D printing materials for soft robotics. Adv Mater 2021;33:e2003387.

7. Zhang Y, Zhang F, Yan Z, et al. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat Rev Mater 2017:2.

8. Derakhshanfar S, Mbeleck R, Xu K, Zhang X, Zhong W, Xing M. 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact Mater 2018;3:144-56.

9. Hubbard JD, Acevedo R, Edwards KM, et al. Fully 3D-printed soft robots with integrated fluidic circuitry. Sci Adv 2021;7:eabe5257.

10. Hensleigh R, Cui H, Xu Z, et al. Charge-programmed three-dimensional printing for multi-material electronic devices. Nat Electron 2020;3:216-24.

11. Liu X, Yuk H, Lin S, et al. 3D printing of living responsive materials and devices. Adv Mater 2018;30:1704821.

12. Montgomery SM, Kuang X, Armstrong CD, Qi HJ. Recent advances in additive manufacturing of active mechanical metamaterials. Curr Opin Solid State Mater Sci 2020;24:100869.

13. Yuan C, Kowsari K, Panjwani S, et al. Ultrafast three-dimensional printing of optically smooth microlens arrays by oscillation-assisted digital light processing. ACS Appl Mater Interfaces 2019;11:40662-8.

14. Feng S, Zhu P, Zheng H, et al. Three-dimensional capillary ratchet-induced liquid directional steering. Science 2021;373:1344-8.

15. Ashby MF, Johnson K. Materials and design: the art and science of material selection in product design. 3rd ed. Oxford: Butterworth-Heinemann. 2013.

16. Howell P, Kozyreff G, Ockendon J. Applied solid mechanics. Cambridge: Cambridge University Press; 2009.

17. Thompson MK, Moroni G, Vaneker T, et al. Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP Annals 2016;65:737-60.

18. Bandyopadhyay A, Bose S. Additive manufacturings. 2nd ed. Boca Raton: CRC press; 2019.

19. McCracken JM, Donovan BR, White TJ. Materials as machines. Adv Mater 2020;32:e1906564.

20. Yee DW, Greer JR. Three-dimensional chemical reactors: in situ materials synthesis to advance vat photopolymerization. Polym Int 2021;70:964-76.

21. Kok Y, Tan X, Wang P, et al. Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: a critical review. Mater Des 2018;139:565-86.

22. Wang X, Jiang M, Zhou Z, Gou J, Hui D. 3D printing of polymer matrix composites: a review and prospective. Compos B Eng 2017;110:442-58.

23. Narupai B, Nelson A. 100th anniversary of macromolecular science viewpoint: macromolecular materials for additive manufacturing. ACS Macro Lett 2020;9:627-38.

24. Ge Q, Li Z, Wang Z, et al. Projection micro stereolithography based 3D printing and its applications. Int J Extrem Manuf 2020;2:022004.

25. Boydston AJ, Cui J, Lee C, Lynde BE, Schilling CA. 100th anniversary of macromolecular science viewpoint: integrating chemistry and engineering to enable additive manufacturing with high-performance polymers. ACS Macro Lett 2020;9:1119-29.

26. Truby RL, Lewis JA. Printing soft matter in three dimensions. Nature 2016;540:371-8.

27. Hull CW. Apparatus for production of three-dimensional objects by stereolithography; 0. Available from: https://patents.google.com/patent/US4575330A/en [Last accessed on 11 Feb 2022].

28. Beaman JJ, Deckard CR. Selective laser sintering with assisted powder handling; 0. Available from: https://patents.google.com/patent/US4938816A/en [Last accessed on 11 Feb 2022].

29. Sun C, Fang N, Wu D, Zhang X. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sens Actuator A Phys 2005;121:113-20.

30. Zheng X, Deotte J, Alonso MP, et al. Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Rev Sci Instrum 2012;83:125001.

31. Cumpston BH, Ananthavel SP, Barlow S, et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 1999;398:51-4.

32. Derby B. Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res 2010;40:395-414.

33. Crump S S. Apparatus and method for creating three-dimensional objects; 0. Available from: https://patents.google.com/patent/US5121329A/en [Last accessed on 11 Feb 2022].

34. Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 2002;23:1169-85.

35. Lewis J. Direct ink writing of 3D functional materials. Adv Funct Mater 2006;16:2193-204.

36. Lewis JA, Gratson GM. Direct writing in three dimensions. Mater Today 2004;7:32-9.

37. Farahani RD, Dubé M, Therriault D. Three-dimensional printing of multifunctional nanocomposites: manufacturing techniques and applications. Adv Mater 2016;28:5794-821.

38. MacDonald E, Wicker R. Multiprocess 3D printing for increasing component functionality. Science 2016;353:aaf2093.

39. Gibson I, Rosen D, Stucker B, Khorasani M. Additive manufacturing technologies. Cham: Springer; 2021.

40. Karalekas D, Aggelopoulos A. Study of shrinkage strains in a stereolithography cured acrylic photopolymer resin. J Mater Process Technol 2003;136:146-50.

41. Jian Y, He Y, Jiang T, Li C, Yang W, Nie J. Polymerization shrinkage of (meth)acrylate determined by reflective laser beam scanning. J Polym Sci B Polym Phys 2012;50:923-8.

42. Jacobs PF. Rapid prototyping & manufacturing: fundamentals of stereolithography. J Manuf Syst 1993;12:430-3.

43. Xu Y, Imamura M, Nakagawa T. Micro-hardness measurement of photopolymer in stereolithography. J Photopol Sci Technol 1997;10:181-6.

44. Tang Y, Henderson CL, Muzzy J, Rosen DW. .

45. Bugeda G, Cervera M, Lombera G, Onate E. Numerical analysis of stereolithography processes using the finite element method. Rapid Prototyp J 1995;1:13-23.

46. Wiedemann B, Dusel K, Eschl J. Investigation into the influence of material and process on part distortion. Rapid Prototyp J 1995;1:17-22.

47. Huang Y, Jiang C. Curl distortion analysis during photopolymerisation of stereolithography using dynamic finite element method. Int J Adv Manuf Technol 2003;21:586-95.

48. Jiang C, Huang Y, Liu C. Dynamic finite element analysis of photopolymerization in stereolithography. Rapid Prototyp J 2006;12:173-80.

49. Westbeek S, Remmers J, van Dommelen J, Maalderink H, Geers M. Prediction of the deformed geometry of vat photo-polymerized components using a multi-physical modeling framework. Additive Manufacturing 2021;40:101922.

50. Westbeek S, Remmers J, van Dommelen J, Geers M. Multi-scale process simulation for additive manufacturing through particle filled vat photopolymerization. Comput Mater Sci 2020;180:109647.

51. Wu T. Theoretical modeling and experimental characterization of stress and crack development in parts manufactured through large area maskless photopolymerization. Available from: https://smartech.gatech.edu/handle/1853/54274 [Last accessed on 11 Feb 2022].

52. Wang Z, Liang H, Dobrynin AV. Computer simulations of continuous 3-D printing. Macromolecules 2017;50:7794-800.

53. Zhang Q, Weng S, Hamel CM, et al. Design for the reduction of volume shrinkage-induced distortion in digital light processing 3D printing. Extreme Mech Lett 2021;48:101403.

54. Wu D, Zhao Z, Zhang Q, Qi HJ, Fang D. Mechanics of shape distortion of DLP 3D printed structures during UV post-curing. Soft Matter 2019;15:6151-9.

55. Armillotta A, Bellotti M, Cavallaro M. Warpage of FDM parts: Experimental tests and analytic model. Robot Comput Integr Manuf 2018;50:140-52.

56. Wang T, Xi J, Jin Y. A model research for prototype warp deformation in the FDM process. Int J Adv Manuf Technol 2007;33:1087-96.

57. Zhu Z, Dhokia V, Nassehi A, Newman ST. Investigation of part distortions as a result of hybrid manufacturing. Robot Comput Integr Manuf 2016;37:23-32.

58. Liu XH, Li SP, Liu Z, Zheng XH, Chen XH, Wang ZB. An investigation on distortion of PLA thin-plate part in the FDM process. Int J Adv Manuf Technol 2015;79:1117-26.

59. Zhang Y, Chou YK. Three-dimensional finite element analysis simulations of the fused deposition modelling process. Proc Inst Mech Eng B J Eng Manuf 2006;220:1663-71.

60. Zhang Y, Chou K. A parametric study of part distortions in fused deposition modelling using three-dimensional finite element analysis. Proc Inst Mech Eng B J Eng Manuf 2008;222:959-68.

61. Dalgarno KW, Childs TRC, Rowntree I, Rothwell L. .

62. Yang H, Hwang P, Lee S. A study on shrinkage compensation of the SLS process by using the Taguchi method. Int J Mach Tools Manuf 2002;42:1203-12.

63. Schmutzler C, Zimmermann A, Zaeh MF. Compensating warpage of 3D printed parts using free-form deformation. Procedia CIRP 2016;41:1017-22.

64. Yin J, Lu C, Fu J, Huang Y, Zheng Y. Interfacial bonding during multi-material fused deposition modeling (FDM) process due to inter-molecular diffusion. Mater Des 2018;150:104-12.

65. Sun Q, Rizvi G, Bellehumeur C, Gu P. Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp J 2008;14:72-80.

66. Ge T, Robbins MO, Perahia D, Grest GS. Healing of polymer interfaces: interfacial dynamics, entanglements, and strength. Phys Rev E Stat Nonlin Soft Matter Phys 2014;90:012602.

67. Yu K, Ge Q, Qi HJ. Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers. Nat Commun 2014;5:3066.

68. Yang T, Liechti KM, Huang R. A multiscale cohesive zone model for rate-dependent fracture of interfaces. J Mech Phys Solids 2020;145:104142.

69. Duty C, Ajinjeru C, Kishore V, et al. What makes a material printable? J Manuf Process 2018;35:526-37.

70. Gojzewski H, Guo Z, Grzelachowska W, et al. Layer-by-layer printing of photopolymers in 3D: how weak is the interface? ACS Appl Mater Interfaces 2020;12:8908-14.

71. Zhao Z, Wu D, Chen H, Jerry Qi H, Fang D. Indentation experiments and simulations of nonuniformly photocrosslinked polymers in 3D printed structures. Additive Manufacturing 2020;35:101420.

72. Zhao Z, Mu X, Wu J, Qi HJ, Fang D. Effects of oxygen on interfacial strength of incremental forming of materials by photopolymerization. Extreme Mech Lett 2016;9:108-18.

73. Tumbleston JR, Shirvanyants D, Ermoshkin N, et al. Additive manufacturing. Continuous liquid interface production of 3D objects. Science 2015;347:1349-52.

74. Regehly M, Garmshausen Y, Reuter M, et al. Xolography for linear volumetric 3D printing. Nature 2020;588:620-4.

75. Wan X, Luo L, Liu Y, Leng J. Direct ink writing based 4D printing of materials and their applications. Adv Sci (Weinh) 2020;7:2001000.

76. Mao Y, Yu K, Isakov MS, Wu J, Dunn ML, Jerry Qi H. Sequential self-folding structures by 3D printed digital shape memory polymers. Sci Rep 2015;5:13616.

77. Ge Q, Sakhaei AH, Lee H, Dunn CK, Fang NX, Dunn ML. Multimaterial 4D Printing with tailorable shape memory polymers. Sci Rep 2016;6:31110.

78. Zhang H, Cheng X, Yan D, Zhang Y, Fang D. A nonlinear mechanics model of soft network metamaterials with unusual swelling behavior and tunable phononic band gaps. Compos Sci Technol 2019;183:107822.

79. Skylar-Scott MA, Mueller J, Visser CW, Lewis JA. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 2019;575:330-5.

80. Hardin JO, Ober TJ, Valentine AD, Lewis JA. Microfluidic Printheads for multimaterial 3D printing of viscoelastic inks. Adv Mater 2015;27:3279-84.

81. Yang H, Li C, Yang M, et al. Printing hydrogels and elastomers in arbitrary sequence with strong adhesion. Adv Funct Mater 2019; doi: 10.1002/adfm.201901721.

82. Ge Q, Chen Z, Cheng J, et al. 3D printing of highly stretchable hydrogel with diverse UV curable polymers. Sci Adv 2021;7:eaba4261.

83. Dolinski ND, Callaway EB, Sample CS, et al. Tough multimaterial interfaces through wavelength-selective 3D printing. ACS Appl Mater Interfaces 2021;13:22065-72.

84. Li Y, Ortiz C, Boyce MC. A generalized mechanical model for suture interfaces of arbitrary geometry. J Mech Phys Solids 2013;61:1144-67.

85. Dunlop JW, Weinkamer R, Fratzl P. Artful interfaces within biological materials. Mater Today 2011;14:70-8.

86. Roach DJ, Hamel CM, Dunn CK, Johnson MV, Kuang X, Qi HJ. The m4 3D printer: A multi-material multi-method additive manufacturing platform for future 3D printed structures. Additive Manufacturing 2019;29:100819.

87. Wu D, Zhao Z, Wang P, et al. Structured Interfaces for improving the tensile strength and toughness of stiff/highly stretchable polymer hybrids. Adv Mater Technol 2020;5:2000652.

88. Rivera J, Hosseini MS, Restrepo D, et al. Toughening mechanisms of the elytra of the diabolical ironclad beetle. Nature 2020;586:543-8.

89. Chen J, Liu X, Tian Y, et al. 3D-printed anisotropic polymer materials for functional applications. Adv Mater 2022;34:e2102877.

90. Monzón M, Ortega Z, Hernández A, Paz R, Ortega F. Anisotropy of photopolymer parts made by digital light processing. Materials (Basel) 2017;10:64.

91. Yao T, Ye J, Deng Z, Zhang K, Ma Y, Ouyang H. Tensile failure strength and separation angle of FDM 3D printing PLA material: experimental and theoretical analyses. Compos B Eng 2020;188:107894.

92. Chen K, Kuang X, Li V, Kang G, Qi HJ. Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing. Soft Matter 2018;14:1879-86.

93. Tancogne-dejean T, Mohr D. Elastically-isotropic truss lattice materials of reduced plastic anisotropy. Int J Solids Struct 2018;138:24-39.

94. Zhang P, To AC. Transversely isotropic hyperelastic-viscoplastic model for glassy polymers with application to additive manufactured photopolymers. Int J Plast 2016;80:56-74.

95. Chen K, Teo HWB, Rao W, et al. Experimental and modeling investigation on the viscoelastic-viscoplastic deformation of polyamide 12 printed by Multi Jet Fusion. Int J Plast 2021;143:103029.

96. Liu J, To AC. Deposition path planning-integrated structural topology optimization for 3D additive manufacturing subject to self-support constraint. Computer-Aided Design 2017;91:27-45.

97. Kickelbick G. .

98. Gu G, Su I, Sharma S, Voros JL, Qin Z, Buehler MJ. Three-dimensional-printing of bio-inspired composites. J Biomech Eng 2016;138:021006.

99. Barthelat F, Yin Z, Buehler MJ. Structure and mechanics of interfaces in biological materials. Nat Rev Mater 2016:1.

100. Huang W, Restrepo D, Jung JY, et al. Multiscale toughening mechanisms in biological materials and bioinspired designs. Adv Mater 2019;31:e1901561.

101. Compton BG, Lewis JA. 3D-printing of lightweight cellular composites. Adv Mater 2014;26:5930-5.

102. Raney JR, Compton BG, Mueller J, Ober TJ, Shea K, Lewis JA. Rotational 3D printing of damage-tolerant composites with programmable mechanics. Proc Natl Acad Sci USA 2018;115:1198-203.

103. Boddeti N, Ding Z, Kaijima S, Maute K, Dunn ML. Simultaneous digital design and additive manufacture of structures and materials. Sci Rep 2018;8:15560.

104. Boddeti N, Rosen DW, Maute K, Dunn ML. Multiscale optimal design and fabrication of laminated composites. Compos Struct 2019;228:111366.

105. Martin JJ, Fiore BE, Erb RM. Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat Commun 2015;6:8641.

106. Kokkinis D, Schaffner M, Studart AR. Multimaterial magnetically assisted 3D printing of composite materials. Nat Commun 2015;6:8643.

107. Mueller J, Raney JR, Shea K, Lewis JA. Architected lattices with high stiffness and toughness via multicore-shell 3D printing. Adv Mater 2018;30:e1705001.

108. Boddeti N, Tang Y, Maute K, Rosen DW, Dunn ML. Optimal design and manufacture of variable stiffness laminated continuous fiber reinforced composites. Sci Rep 2020;10:16507.

109. Sun Y, Tian W, Zhang T, Chen P, Li M. Strength and toughness enhancement in 3d printing via bioinspired tool path. Mater Des 2020;185:108239.

110. Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO. Bioinspired structural materials. Nat Mater 2015;14:23-36.

111. Dimas LS, Bratzel GH, Eylon I, Buehler MJ. Tough composites inspired by mineralized natural materials: computation, 3D printing, and testing. Adv Funct Mater 2013;23:4629-38.

112. Dimas LS, Buehler MJ. Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties. Soft Matter 2014;10:4436-42.

113. Gu GX, Takaffoli M, Hsieh AJ, Buehler MJ. Biomimetic additive manufactured polymer composites for improved impact resistance. Extreme Mech Lett 2016;9:317-23.

114. Gu GX, Chen C, Richmond DJ, Buehler MJ. Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment. Mater Horiz 2018;5:939-45.

115. Libonati F, Gu GX, Qin Z, Vergani L, Buehler MJ. Bone-inspired materials by design: toughness amplification observed using 3D printing and testing. Adv Eng Mater 2016;18:1354-63.

116. Lei M, Hamel CM, Yuan C, Lu H, Qi HJ. 3D printed two-dimensional periodic structures with tailored in-plane dynamic responses and fracture behaviors. Compos Sci Technol 2018;159:189-98.

117. Gu GX, Takaffoli M, Buehler MJ. Hierarchically enhanced impact resistance of bioinspired composites. Adv Mater 2017;29:1700060.

118. Sant S, Hancock MJ, Donnelly JP, Iyer D, Khademhosseini A. Biomimetic gradient hydrogels for tissue engineering. Can J Chem Eng 2010;88:899-911.

119. Oshkour AA, Abu Osman NA, Yau YH, Tarlochan F, Abas WA. Design of new generation femoral prostheses using functionally graded materials: a finite element analysis. Proc Inst Mech Eng H 2013;227:3-17.

120. Kokkinis D, Bouville F, Studart AR. 3D printing of materials with tunable failure via bioinspired mechanical gradients. Adv Mater 2018;30:e1705808.

121. Kuang X, Wu J, Chen K, et al. Grayscale digital light processing 3D printing for highly functionally graded materials. Sci Adv 2019;5:eaav5790.

122. Bartlett NW, Tolley MT, Overvelde JT, et al. SOFT ROBOTICS. A 3D-printed, functionally graded soft robot powered by combustion. Science 2015;349:161-5.

123. Ituarte IF, Boddeti N, Hassani V, Dunn ML, Rosen DW. Design and additive manufacture of functionally graded structures based on digital materials. Additive Manufacturing 2019;30:100839.

124. Chen K, Zhang L, Kuang X, et al. Dynamic photomask-assisted direct ink writing multimaterial for multilevel triboelectric nanogenerator. Adv Funct Mater 2019;29:1903568.

125. Giachini PAGS, Gupta SS, Wang W, et al. Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients. Sci Adv 2020;6:eaay0929.

126. Kuang X, Roach DJ, Wu J, et al. Advances in 4D printing: materials and applications. Adv Funct Mater 2019;29:1805290.

127. Rastogi P, Kandasubramanian B. Breakthrough in the printing tactics for stimuli-responsive materials: 4D printing. Chem Eng J 2019;366:264-304.

128. Zhang B, Li H, Cheng J, et al. Mechanically robust and UV-curable shape-memory polymers for digital light processing based 4D printing. Adv Mater 2021;33:e2101298.

129. Zhao Q, Qi HJ, Xie T. Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog Polym Sci 2015;49-50:79-120.

130. Chen Z, Huang G, Trase I, Han X, Mei Y. Mechanical self-assembly of a strain-engineered flexible layer: wrinkling, rolling, and twisting. Phys Rev Applied 2016:5.

131. Manen T, Janbaz S, Zadpoor AA. Programming 2D/3D shape-shifting with hobbyist 3D printers. Mater Horiz 2017;4:1064-9.

132. Ding Z, Yuan C, Peng X, Wang T, Qi HJ, Dunn ML. Direct 4D printing via active composite materials. Sci Adv 2017;3:e1602890.

133. Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. Biomimetic 4D printing. Nat Mater 2016;15:413-8.

134. Li Q, Xu Z, Ji S, et al. Kinetics-induced morphing of three-dimensional-printed gel structures based on geometric asymmetry. J Appl Mech 2020;87:071008.

135. Zhao Z, Qi HJ, Fang D. A finite deformation theory of desolvation and swelling in partially photo-cross-linked polymer networks for 3D/4D printing applications. Soft Matter 2019;15:1005-16.

136. Pozo M, Sol JAHP, Schenning APHJ, Debije MG. 4D Printing of liquid crystals: what’s right for me? Adv Mater 2022;34:e2104390.

137. Kim Y, Yuk H, Zhao R, Chester SA, Zhao X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 2018;558:274-9.

138. Wu S, Hamel CM, Ze Q, Yang F, Qi HJ, Zhao R. Evolutionary algorithm-guided voxel-encoding printing of functional hard-magnetic soft active materials. Advanced Intelligent Systems 2020;2:2000060.

139. Sossou G, Demoly F, Belkebir H, Qi HJ, Gomes S, Montavon G. Design for 4D printing: modeling and computation of smart materials distributions. Mater Des 2019;181:108074.

140. Hamel CM, Roach DJ, Long KN, Demoly F, Dunn ML, Qi HJ. Machine-learning based design of active composite structures for 4D printing. Smart Mater Struct 2019;28:065005.

141. Zhang Z, Gu GX. Finite-element-based deep-learning model for deformation behavior of digital materials. Adv Theory Simul 2020;3:2000031.

142. Su J, Li D, Xie Y, et al. A machine learning workflow for 4D printing: understand and predict morphing behaviors of printed active structures. Smart Mater Struct 2020;30:015028.

143. Gere JM, Goodno BJ. Mechanics of materials. Available from: https://www.cengageasia.com/TitleDetails/isbn/9781337093347 [Last accessed on 11 Feb 2022].

144. Zhao Z, Wu J, Mu X, Chen H, Qi HJ, Fang D. Origami by frontal photopolymerization. Sci Adv 2017;3:e1602326.

145. Ge Q, Qi HJ, Dunn ML. Active materials by four-dimension printing. Appl Phys Lett 2013;103:131901.

146. Vantomme G, Elands LCM, Gelebart AH, et al. Coupled liquid crystalline oscillators in Huygens’ synchrony. Nat Mater 2021;20:1702-6.

147. Korner K, Kuenstler AS, Hayward RC, Audoly B, Bhattacharya K. A nonlinear beam model of photomotile structures. Proc Natl Acad Sci USA 2020;117:9762-70.

148. Zhang H, Feng H, Huang J, Paik J. Generalized modeling of origami folding joints. Extreme Mech Lett 2021;45:101213.

149. Giampieri A, Perego U, Borsari R. A constitutive model for the mechanical response of the folding of creased paperboard. Int J Solids Struct 2011;48:2275-87.

150. Wang L, Song W, Zhang Y, et al. Active reconfigurable tristable square-twist origami. Adv Funct Mater 2020;30:1909087.

151. Liu G, Zhao Y, Wu G, Lu J. Origami and 4D printing of elastomer-derived ceramic structures. Sci Adv 2018;4:eaat0641.

152. Kochmann DM, Bertoldi K. Exploiting microstructural instabilities in solids and structures: from metamaterials to structural transitions. Appl Mech Rev 2017;69:050801.

153. Nojoomi A, Arslan H, Lee K, Yum K. Bioinspired 3D structures with programmable morphologies and motions. Nat Commun 2018;9:3705.

154. Efrati E, Sharon E, Kupferman R. Elastic theory of unconstrained non-Euclidean plates. J Mech Phys Solids 2009;57:762-75.

155. Ding Z, Weeger O, Qi HJ, Dunn ML. 4D rods: 3D structures via programmable 1D composite rods. Mater Des 2018;137:256-65.

156. Zhang Q, Kuang X, Weng S, et al. Shape-memory balloon structures by pneumatic multi-material 4D printing. Adv Funct Mater 2021;31:2010872.

157. Siéfert E, Reyssat E, Bico J, Roman B. Bio-inspired pneumatic shape-morphing elastomers. Nat Mater 2019;18:24-8.

158. Boley JW, van Rees WM, Lissandrello C, et al. Shape-shifting structured lattices via multimaterial 4D printing. Proc Natl Acad Sci USA 2019;116:20856-62.

159. Hua M, Kim C, Du Y, Wu D, Bai R, He X. Swaying gel: chemo-mechanical self-oscillation based on dynamic buckling. Matter 2021;4:1029-41.

160. Zhao Z, Kuang X, Yuan C, Qi HJ, Fang D. Hydrophilic/hydrophobic composite shape-shifting structures. ACS Appl Mater Interfaces 2018;10:19932-9.

161. Chen T, Bilal OR, Shea K, Daraio C. Harnessing bistability for directional propulsion of soft, untethered robots. Proc Natl Acad Sci USA 2018;115:5698-702.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/