REFERENCES

1. Xue Q, Sun J, Huang Y, et al. Recent progress on flexible and wearable supercapacitors. Small 2017;13:1701827.

2. Muralee gopi CV, Vinodh R, Sambasivam S, Obaidat IM, Kim H. Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: From design and development to applications. Journal of Energy Storage 2020;27:101035.

3. Fu Y, Cai X, Wu H, et al. Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv Mater 2012;24:5713-8.

4. Sumboja A, Liu J, Zheng WG, Zong Y, Zhang H, Liu Z. Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem Soc Rev 2018;47:5919-45.

5. Li H, Tang Z, Liu Z, Zhi C. Evaluating flexibility and wearability of flexible energy storage devices. Joule 2019;3:613-9.

6. Taube Navaraj W, García Núñez C, Shakthivel D, et al. Nanowire FET based neural element for robotic tactile sensing skin. Front Neurosci 2017;11:501.

7. Nazari A, Farhad S. Heat generation in lithium-ion batteries with different nominal capacities and chemistries. Appl Therm Eng 2017;125:1501-17.

8. Dong L, Xu C, Li Y, et al. Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J Mater Chem A 2016;4:4659-85.

9. Yun TG, Park M, Kim DH, et al. All-transparent stretchable electrochromic supercapacitor wearable patch device. ACS Nano 2019;13:3141-50.

10. Yu L, Chen GZ. Ionic liquid-based electrolytes for supercapacitor and supercapattery. Front Chem 2019;7:272.

11. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 2015;44:7484-539.

12. Xu T, Yang D, Zhang S, Zhao T, Zhang M, Yu Z. Antifreezing and stretchable all-gel-state supercapacitor with enhanced capacitances established by graphene/PEDOT-polyvinyl alcohol hydrogel fibers with dual networks. Carbon 2021;171:201-10.

13. Wang Y, Wang X, Li X, et al. A high-performance, tailorable, wearable, and foldable solid-state supercapacitor enabled by arranging pseudocapacitive groups and MXene flakes on textile electrode surface. Adv Funct Mater 2021;31:2008185.

14. Zhao J, Lu H, Zhang Y, et al. Direct coherent multi-ink printing of fabric supercapacitors. Sci Adv 2021;7:eabd6978.

15. Ji X, Wang Q, Yu M, et al. All-in-one energy storage devices supported and interfacially cross-linked by gel polymeric electrolyte. Energy Storage Materials 2021;37:587-97.

16. Sheng H, Zhou J, Li B, et al. A thin, deformable, high-performance supercapacitor implant that can be biodegraded and bioabsorbed within an animal body. Sci Adv 2021;7:eabe3097.

17. Jiang L, Mei X, Gan D, et al. Hybrid transition-metal oxide and nitride@N-doped reduced graphene oxide electrodes for high-performance, flexible, and all-solid-state supercapacitors. Chemistry 2021;27:5761-8.

18. Zhang L, Hu X, Wang Z, Sun F, Dorrell DG. A review of supercapacitor modeling, estimation, and applications: a control/management perspective. Renew Sust Energ Rev 2018;81:1868-78.

19. Jeong JW, Shin G, Park SI, Yu KJ, Xu L, Rogers JA. Soft materials in neuroengineering for hard problems in neuroscience. Neuron 2015;86:175-86.

20. Raza W, Ali F, Raza N, et al. Recent advancements in supercapacitor technology. Nano Energy 2018;52:441-73.

21. Jiang L, Luo D, Zhang Q, et al. Electrochemical performance of free-standing and flexible graphene and TiO2 composites with different conductive polymers as electrodes for supercapacitors. Chemistry 2019;25:7903-11.

22. Zhang LL, Zhao XS. Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 2009;38:2520-31.

23. Da Silva LM, Cesar R, Moreira CM, et al. Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials. Energy Storage Materials 2020;27:555-90.

24. Chen Z, Wang X, Xue B, et al. Rice husk-based hierarchical porous carbon for high performance supercapacitors: the structure-performance relationship. Carbon 2020;161:432-44.

25. Wang Y, Chen F, Liu Z, et al. A highly elastic and reversibly stretchable all-polymer supercapacitor. Angew Chem 2019;131:15854-8.

26. Liu R, Zhou A, Zhang X, et al. Fundamentals, advances and challenges of transition metal compounds-based supercapacitors. Chem Eng J 2021;412:128611.

27. Nguyen T, Montemor MF. Metal oxide and hydroxide-based aqueous supercapacitors: from charge storage mechanisms and functional electrode engineering to need-tailored devices. Adv Sci (Weinh) 2019;6:1801797.

28. Naskar P, Maiti A, Chakraborty P, Kundu D, Biswas B, Banerjee A. Chemical supercapacitors: a review focusing on metallic compounds and conducting polymers. J Mater Chem A 2021;9:1970-2017.

29. Lim HR, Kim HS, Qazi R, Kwon YT, Jeong JW, Yeo WH. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv Mater 2020;32:e1901924.

30. Kazem N, Hellebrekers T, Majidi C. Soft multifunctional composites and emulsions with liquid metals. Adv Mater 2017;29:1605985.

31. Kim DH, Lu N, Ma R, et al. Epidermal electronics. Science 2011;333:838-43.

32. Song Y, Chen H, Chen X, et al. All-in-one piezoresistive-sensing patch integrated with micro-supercapacitor. Nano Energy 2018;53:189-97.

33. Yu C, Masarapu C, Rong J, Wei B, Jiang H. Stretchable supercapacitors based on buckled single-walled carbon-nanotube macrofilms. Adv Mater 2009;21:4793-7.

34. Lacour SP, Courtine G, Guck J. Materials and technologies for soft implantable neuroprostheses. Nat Rev Mater 2016:1.

35. Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras GG. Next-generation probes, particles, and proteins for neural interfacing. Sci Adv 2017;3:e1601649.

36. Yang Z, Deng J, Chen X, Ren J, Peng H. A highly stretchable, fiber-shaped supercapacitor. Angew Chem 2013;125:13695-9.

37. An T, Cheng W. Recent progress in stretchable supercapacitors. J Mater Chem A 2018;6:15478-94.

38. Li X, Li H, Fan X, Shi X, Liang J. 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Adv Energy Mater 2020;10:1903794.

39. Zheng Z, Jin J, Dong JC, et al. Unusual sonochemical assembly between carbon allotropes for high strain-tolerant conductive nanocomposites. ACS Nano 2019;13:12062-9.

40. Zhi J, Zhao W, Liu X, Chen A, Liu Z, Huang F. Highly conductive ordered mesoporous carbon based electrodes decorated by 3D graphene and 1D silver nanowire for flexible supercapacitor. Adv Funct Mater 2014;24:2013-9.

41. Javed MS, Shaheen N, Hussain S, et al. An ultra-high energy density flexible asymmetric supercapacitor based on hierarchical fabric decorated with 2D bimetallic oxide nanosheets and MOF-derived porous carbon polyhedra. J Mater Chem A 2019;7:946-57.

42. Sheberla D, Bachman JC, Elias JS, Sun CJ, Shao-Horn Y, Dincă M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat Mater 2017;16:220-4.

43. Yan J, Ren CE, Maleski K, et al. Flexible MXene/Graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv Funct Mater 2017;27:1701264.

44. Sim HJ, Choi C, Lee DY, et al. Biomolecule based fiber supercapacitor for implantable device. Nano Energy 2018;47:385-92.

45. He S, Hu Y, Wan J, et al. Biocompatible carbon nanotube fibers for implantable supercapacitors. Carbon 2017;122:162-7.

46. Tian W, Li Y, Zhou J, et al. Implantable and biodegradable micro-supercapacitor based on a superassembled three-dimensional network Zn@PPy hybrid electrode. ACS Appl Mater Interfaces 2021;13:8285-93.

47. wu J, Xia M, Zhang X, et al. Hierarchical porous carbon derived from wood tar using crab as the template: performance on supercapacitor. J Power Sources 2020;455:227982.

48. Tan S, Kraus TJ, Li-oakey KD. Understanding the supercapacitor properties of electrospun carbon nanofibers from powder river basin coal. Fuel 2019;245:148-59.

49. Gopalakrishnan A, Badhulika S. Sulfonated porous carbon nanosheets derived from oak nutshell based high-performance supercapacitor for powering electronic devices. Renewable Energy 2020;161:173-83.

50. Jiang L, Ren Z, Chen S, et al. Bio-derived three-dimensional hierarchical carbon-graphene-TiO2 as electrode for supercapacitors. Sci Rep 2018;8:4412.

51. Pumera M. Graphene-based nanomaterials and their electrochemistry. Chem Soc Rev 2010;39:4146-57.

52. Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys 2009;81:109-62.

53. Moon IK, Lee J, Ruoff RS, Lee H. Reduced graphene oxide by chemical graphitization. Nat Commun 2010;1:73.

54. Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Graphene-based ultracapacitors. Nano Lett 2008;8:3498-502.

55. Compton OC, Nguyen ST. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 2010;6:711-23.

56. Chen H, Müller MB, Gilmore KJ, Wallace GG, Li D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv Mater 2008;20:3557-61.

57. Liu F, Song S, Xue D, Zhang H. Folded structured graphene paper for high performance electrode materials. Adv Mater 2012;24:1089-94.

58. Pei S, Zhao J, Du J, Ren W, Cheng H. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010;48:4466-74.

59. Xu Y, Lin Z, Huang X, Liu Y, Huang Y, Duan X. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 2013;7:4042-9.

60. Xiong Z, Liao C, Han W, Wang X. Mechanically tough large-area hierarchical porous graphene films for high-performance flexible supercapacitor applications. Adv Mater 2015;27:4469-75.

61. Xu Y, Lin Z, Huang X, Wang Y, Huang Y, Duan X. Functionalized graphene hydrogel-based high-performance supercapacitors. Adv Mater 2013;25:5779-84.

62. Yuan S, Fan W, Jin Y, Wang D, Liu T. Free-standing flexible graphene-based aerogel film with high energy density as an electrode for supercapacitors. Nano Materials Science 2021;3:68-74.

63. Yu P, Zhao X, Huang Z, Li Y, Zhang Q. Free-standing three-dimensional graphene and polyaniline nanowire arrays hybrid foams for high-performance flexible and lightweight supercapacitors. J Mater Chem A 2014;2:14413-20.

64. Guo X, Bai N, Tian Y, Gai L. Free-standing reduced graphene oxide/polypyrrole films with enhanced electrochemical performance for flexible supercapacitors. J Power Sources 2018;408:51-7.

65. Zou Z, Zhou W, Zhang Y, Yu H, Hu C, Xiao W. High-performance flexible all-solid-state supercapacitor constructed by free-standing cellulose/reduced graphene oxide/silver nanoparticles composite film. Chem Eng J 2019;357:45-55.

66. Liu F, Xie L, Wang L, et al. Hierarchical porous RGO/PEDOT/PANI hybrid for planar/linear supercapacitor with outstanding flexibility and stability. Nanomicro Lett 2020;12:17.

67. Yu D, Dai L. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J Phys Chem Lett 2010;1:467-70.

68. Gao M, Wang P, Jiang L, et al. Power generation for wearable systems. Energy Environ Sci 2021;14:2114-57.

69. Manjakkal L, Navaraj WT, Núñez CG, Dahiya R. Graphene-graphite polyurethane composite based high-energy density flexible supercapacitors. Adv Sci (Weinh) 2019;6:1802251.

70. Atta MM, Abdel Maksoud MIA, Sallam OI, Awed AS. Gamma irradiation synthesis of wearable supercapacitor based on reduced graphene oxide/cotton yarn electrode. J Mater Sci: Mater Electron 2021;32:3688-98.

71. El-Kady MF, Strong V, Dubin S, Kaner RB. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 2012;335:1326-30.

72. Afroj S, Tan S, Abdelkader AM, Novoselov KS, Karim N. Highly conductive, scalable, and machine washable graphene-based E-textiles for multifunctional wearable electronic applications. Adv Funct Mater 2020;30:2000293.

73. Tran T, Dutta NK, Roy Choudhury N. Graphene-based inks for printing of planar micro-supercapacitors: a review. Materials (Basel) 2019;12:978.

74. Le LT, Ervin MH, Qiu H, Fuchs BE, Lee WY. Graphene supercapacitor electrodes fabricated by inkjet printing and thermal reduction of graphene oxide. Electrochem Commun 2011;13:355-8.

75. Li H, Liu S, Li X, Wu Z, Liang J. Screen-printing fabrication of high volumetric energy density micro-supercapacitors based on high-resolution thixotropic-ternary hybrid interdigital micro-electrodes. Mater Chem Front 2019;3:626-35.

76. Li G, Mo X, Law W, Chan KC. 3D printed graphene/nickel electrodes for high areal capacitance electrochemical storage. J Mater Chem A 2019;7:4055-62.

77. Liu L, Lu J, Long X, et al. 3D printing of high-performance micro-supercapacitors with patterned exfoliated graphene/carbon nanotube/silver nanowire electrodes. Sci China Technol Sci 2021;64:1065-73.

78. Liu J, Ye J, Pan F, Wang X, Zhu Y. Solid-state yet flexible supercapacitors made by inkjet-printing hybrid ink of carbon quantum dots/graphene oxide platelets on paper. Sci China Mater 2019;62:545-54.

79. Sundriyal P, Bhattacharya S. Inkjet-printed electrodes on A4 paper substrates for low-cost, disposable, and flexible asymmetric supercapacitors. ACS Appl Mater Interfaces 2017;9:38507-21.

80. Lee S, Choi K, Kim S, Lee S. Wearable supercapacitors printed on garments. Adv Funct Mater 2018;28:1705571.

81. Delekta S, Smith AD, Li J, Östling M. Inkjet printed highly transparent and flexible graphene micro-supercapacitors. Nanoscale 2017;9:6998-7005.

82. Pham M, Khazaeli A, Godbille-cardona G, Truica-marasescu F, Peppley B, Barz DP. Printing of graphene supercapacitors with enhanced capacitances induced by a leavening agent. J Energy Storage 2020;28:101210.

83. Hyun WJ, Secor EB, Kim C, Hersam MC, Francis LF, Frisbie CD. Scalable, self-aligned printing of flexible graphene micro-supercapacitors. Adv Energy Mater 2017;7:1700285.

84. Yang B, Xiong Y, Ma K, Liu S, Tao X. Recent advances in wearable textile-based triboelectric generator systems for energy harvesting from human motion. EcoMat 2020:2.

85. Zhou Y, Wang CH, Lu W, Dai L. Recent advances in fiber-shaped supercapacitors and lithium-ion batteries. Adv Mater 2020;32:e1902779.

86. Meng Y, Zhao Y, Hu C, et al. All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 2013;25:2326-31.

87. Liu L, Yu Y, Yan C, Li K, Zheng Z. Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes. Nat Commun 2015;6:7260.

88. Yuk H, Lu B, Zhao X. Hydrogel bioelectronics. Chem Soc Rev 2019;48:1642-67.

89. Qu G, Cheng J, Li X, et al. A Fiber Supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv Mater 2016;28:3646-52.

90. Zhang L, Shi G. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J Phys Chem C 2011;115:17206-12.

91. Chen P, Yang J, Li S, et al. Hydrothermal synthesis of macroscopic nitrogen-doped graphene hydrogels for ultrafast supercapacitor. Nano Energy 2013;2:249-56.

92. Lien C, Vedhanarayanan B, Chen J, et al. Optimization of acetonitrile/water content in hybrid deep eutectic solvent for graphene/MoS2 hydrogel-based supercapacitors. Chemical Engineering Journal 2021;405:126706.

93. Kang J, Hwang M, Seong K, Lyu L, Ko D, Piao Y. Three-dimensional nanocomposite of graphene/MWCNT hydrogel grafted with Ni-Co hydroxide nanorods as high-performance electrode for asymmetric supercapacitor. Electrochimica Acta 2020;346:136258.

94. Khazaeli A, Godbille-cardona G, Barz DPJ. A novel flexible hybrid battery-supercapacitor based on a self-assembled vanadium-graphene hydrogel. Adv Funct Mater 2020;30:1910738.

95. Wu D, Zhong W. A new strategy for anchoring a functionalized graphene hydrogel in a carbon cloth network to support a lignosulfonate/polyaniline hydrogel as an integrated electrode for flexible high areal-capacitance supercapacitors. J Mater Chem A 2019;7:5819-30.

96. Zou Y, Zhang Z, Zhong W, Yang W. Hydrothermal direct synthesis of polyaniline, graphene/polyaniline and N-doped graphene/polyaniline hydrogels for high performance flexible supercapacitors. J Mater Chem A 2018;6:9245-56.

97. Ates M, El-Kady M, Kaner RB. Three-dimensional design and fabrication of reduced graphene oxide/polyaniline composite hydrogel electrodes for high performance electrochemical supercapacitors. Nanotechnology 2018;29:175402.

98. Chen T, Dai L. Flexible supercapacitors based on carbon nanomaterials. J Mater Chem A 2014;2:10756.

99. Chen H, Zeng S, Chen M, Zhang Y, Li Q. Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors. Carbon 2015;92:271-96.

100. Senokos E, Rana M, Santos C, Marcilla R, Vilatela JJ. Controlled electrochemical functionalization of CNT fibers: structure-chemistry relations and application in current collector-free all-solid supercapacitors. Carbon 2019;142:599-609.

101. Lee JA, Shin MK, Kim SH, et al. Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat Commun 2013;4:1970.

102. Patil B, Ahn S, Yu S, et al. Electrochemical performance of a coaxial fiber-shaped asymmetric supercapacitor based on nanostructured MnO2/CNT-web paper and Fe2O3/carbon fiber electrodes. Carbon 2018;134:366-75.

103. Wang S, Liang Y, Zhuo W, et al. Freestanding polypyrrole/carbon nanotube electrodes with high mass loading for robust flexible supercapacitors. Mater Chem Front 2021;5:1324-9.

104. Mirabedini A, Lu Z, Mostafavian S, Foroughi J. Triaxial carbon nanotube/conducting polymer wet-spun fibers supercapacitors for wearable electronics. Nanomaterials (Basel) 2020;11:3.

105. Cao C, Zhou Y, Ubnoske S, et al. Highly stretchable supercapacitors via crumpled vertically aligned carbon nanotube forests. Adv Energy Mater 2019;9:1900618.

106. Liu L, Niu Z, Chen J. Design and integration of flexible planar micro-supercapacitors. Nano Res 2017;10:1524-44.

107. Zhang R, Yan K, Palumbo A, Xu J, Fu S, Yang EH. A stretchable and bendable all-solid-state pseudocapacitor with dodecylbenzenesulfonate-doped polypyrrole-coated vertically aligned carbon nanotubes partially embedded in PDMS. Nanotechnology 2019;30:095401.

108. Pu X, Li L, Liu M, et al. Wearable self-charging power textile based on flexible yarn supercapacitors and fabric nanogenerators. Adv Mater 2016;28:98-105.

109. Niu Z, Liu L, Zhang L, Zhou W, Chen X, Xie S. Programmable nanocarbon-based architectures for flexible supercapacitors. Adv Energy Mater 2015;5:1500677.

110. Guo T, Zhou D, Liu W, Su J. Recent advances in all-in-one flexible supercapacitors. Sci China Mater 2021;64:27-45.

111. Wang Y, Ding Y, Guo X, Yu G. Conductive polymers for stretchable supercapacitors. Nano Res 2019;12:1978-87.

112. Shi Y, Peng L, Ding Y, Zhao Y, Yu G. Nanostructured conductive polymers for advanced energy storage. Chem Soc Rev 2015;44:6684-96.

113. Wang G, Zhang L, Zhang J. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 2012;41:797-828.

114. Wang L, Zhang C, Jiao X, Yuan Z. Polypyrrole-based hybrid nanostructures grown on textile for wearable supercapacitors. Nano Res 2019;12:1129-37.

115. Chu X, Chen G, Xiao X, et al. Air-Stable conductive polymer ink for printed wearable micro-supercapacitors. Small 2021;17:e2100956.

116. Zhao J, Zhang Y, Zhao X, et al. Direct ink writing of adjustable electrochemical energy storage device with high gravimetric energy densities. Adv Funct Mater 2019;29:1900809.

117. Kayser LV, Lipomi DJ. Stretchable conductive polymers and composites based on PEDOT and PEDOT:PSS. Adv Mater 2019;31:e1806133.

118. Yang J, Cao Q, Tang X, et al. 3D-printed highly stretchable conducting polymer electrodes for flexible supercapacitors. J Mater Chem A 2021; doi: 10.1039/d1ta02617h.

119. Wang K, Zhang X, Li C, et al. Flexible solid-state supercapacitors based on a conducting polymer hydrogel with enhanced electrochemical performance. J Mater Chem A 2014;2:19726-32.

120. Shi Y, Pan L, Liu B, et al. Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes. J Mater Chem A 2014;2:6086-91.

121. Ghosh S, Inganäs O. Conducting polymer hydrogels as 3D electrodes: applications for supercapacitors. Adv Mater 1999;11:1214-8.

122. Shown I, Ganguly A, Chen L, Chen K. Conducting polymer-based flexible supercapacitor. Energy Sci Eng 2015;3:2-26.

123. Pan L, Yu G, Zhai D, et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc Natl Acad Sci U S A 2012;109:9287-92.

124. Green RA, Baek S, Poole-Warren LA, Martens PJ. Conducting polymer-hydrogels for medical electrode applications. Sci Technol Adv Mater 2010;11:014107.

125. Das S, Chakraborty P, Mondal S, Shit A, Nandi AK. Enhancement of energy storage and photoresponse properties of folic acid-polyaniline hybrid hydrogel by in situ growth of Ag nanoparticles. ACS Appl Mater Interfaces 2016;8:28055-67.

126. Wang Y, Shi Y, Pan L, et al. Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels. Nano Lett 2015;15:7736-41.

127. Chen Z, To JWF, Wang C, et al. A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes. Adv Energy Mater 2014;4:1400207.

128. Zhao Y, Zhang B, Yao B, et al. Hierarchically structured stretchable conductive hydrogels for high-performance wearable strain sensors and supercapacitors. Matter 2020;3:1196-210.

129. Li L, Shi Y, Pan L, Shi Y, Yu G. Rational design and applications of conducting polymer hydrogels as electrochemical biosensors. J Mater Chem B 2015;3:2920-30.

130. Jiang L, Lu X, Xie C, Wan G, Zhang H, Youhong T. Flexible, free-standing TiO2 -graphene-polypyrrole composite films as electrodes for supercapacitors. J Phys Chem C 2015;119:3903-10.

131. Jiang L, Li Y, Luo D, et al. Freestanding RGO-Co3O4 -PPy Composite Films as Electrodes for Supercapacitors. Energy Technol 2019;7:1800606.

132. Jiang L, Song S, Luo D, et al. Plant growth-inspired design of high-performance composite electrode nanostructures for supercapacitors. Materials Today Physics 2020;12:100138.

133. Jia Y, Jiang X, Ahmed A, Zhou L, Fan Q, Shao J. Microfluidic-architected core-shell flower-like δ-MnO2@graphene fibers for high energy-storage wearable supercapacitors. Electrochimica Acta 2021;372:137827.

134. Karami Z, Youssefi M, Raeissi K, Zhiani M. An efficient textile-based electrode utilizing silver nanoparticles/reduced graphene oxide/cotton fabric composite for high-performance wearable supercapacitors. Electrochimica Acta 2021;368:137647.

135. Salman A, Padmajan Sasikala S, Kim IH, et al. Tungsten nitride-coated graphene fibers for high-performance wearable supercapacitors. Nanoscale 2020;12:20239-49.

136. Yi Y, Yu L, Tian Z, et al. Biotemplated synthesis of transition metal nitride architectures for flexible printed circuits and wearable energy storages. Adv Funct Mater 2018;28:1805510.

137. Peng Z, Huang J, He Q, Tan L, Chen Y. Highly porous Mn3O4 nanosheets with in situ coated carbon enabling fully screen-printed planar supercapacitors with remarkable volumetric performance. J Mater Chem A 2021;9:4273-80.

138. Hoskins BF, Robson R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J Am Chem Soc 1989;111:5962-4.

139. Hoskins BF, Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4'',4'''-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J Am Chem Soc 1990;112:1546-54.

140. Shepherd ND, D'alessandro DM. Structurally photo-active metal-organic frameworks: Incorporation methods, response tuning, and potential applications. Chem Phys Rev 2021;2:011301.

141. Gangu KK, Maddila S, Mukkamala SB, Jonnalagadda SB. A review on contemporary metal-organic framework materials. Inorganica Chimica Acta 2016;446:61-74.

142. Fang Z, Bueken B, De Vos DE, Fischer RA. Defect-engineered metal-organic frameworks. Angew Chem Int Ed Engl 2015;54:7234-54.

143. Dissegna S, Epp K, Heinz WR, Kieslich G, Fischer RA. Defective metal-organic frameworks. Adv Mater 2018;30:e1704501.

144. Zhou Z, Zhang Q, Sun J, et al. Metal-organic framework derived spindle-like carbon incorporated α-Fe2O3 grown on carbon nanotube fiber as anodes for high-performance wearable asymmetric supercapacitors. ACS Nano 2018;12:9333-41.

145. Zhou J, Yuan Y, Tang J, Tang W. Metal-organic frameworks governed well-aligned conducting polymer/bacterial cellulose membranes with high areal capacitance. Energy Storage Materials 2019;23:594-601.

146. Yang J, Xiong P, Zheng C, Qiu H, Wei M. Metal-organic frameworks: a new promising class of materials for a high performance supercapacitor electrode. J Mater Chem A 2014;2:16640-4.

147. Wang K, Bi R, Huang M, et al. Porous cobalt metal-organic frameworks as active elements in battery-supercapacitor hybrid devices. Inorg Chem 2020;59:6808-14.

148. Liu Y, Xu X, Shao Z, Jiang SP. Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application. Energy Storage Materials 2020;26:1-22.

149. Wang K, Xun Q, Zhang Q. Recent progress in metal-organic frameworks as active materials for supercapacitors. EnergyChem 2020;2:100025.

150. Cherusseri J, Pandey D, Sambath Kumar K, Thomas J, Zhai L. Flexible supercapacitor electrodes using metal-organic frameworks. Nanoscale 2020;12:17649-62.

151. Xu X, Tang J, Qian H, et al. Three-dimensional networked metal-organic frameworks with conductive polypyrrole tubes for flexible supercapacitors. ACS Appl Mater Interfaces 2017;9:38737-44.

152. Wang B, Liu S, Liu L, et al. MOF/PEDOT/HPMo-based polycomponent hierarchical hollow micro-vesicles for high performance flexible supercapacitors. J Mater Chem A 2021;9:2948-58.

153. Xie LS, Skorupskii G, Dincă M. Electrically conductive metal-organic frameworks. Chem Rev 2020;120:8536-80.

154. Hou R, Miao M, Wang Q, et al. Integrated conductive hybrid architecture of metal - organic framework nanowire array on polypyrrole membrane for all-solid-state flexible supercapacitors. Adv Energy Mater 2019;10:1901892.

155. Zhang W, Li R, Zheng H, Bao J, Tang Y, Zhou K. Laser-assisted printing of electrodes using metal - organic frameworks for micro-supercapacitors. Adv Funct Mater 2021;31:2009057.

156. Naguib M, Kurtoglu M, Presser V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Adv Mater 2011;23:4248-53.

157. Wang L, Zhang M, Yang B, Tan J, Ding X, Li W. Recent advances in multidimensional (1D, 2D, and 3D) composite sensors derived from MXene: synthesis, structure, application, and perspective. Small Methods 2021;5:2100409.

158. Hu M, Zhang H, Hu T, Fan B, Wang X, Li Z. Emerging 2D MXenes for supercapacitors: status, challenges and prospects. Chem Soc Rev 2020;49:6666-93.

159. Deysher G, Shuck CE, Hantanasirisakul K, et al. Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano 2020;14:204-17.

160. Ibrahim Y, Mohamed A, Abdelgawad AM, Eid K, Abdullah AM, Elzatahry A. The recent advances in the mechanical properties of self-standing two-dimensional MXene-based nanostructures: deep insights into the supercapacitor. Nanomaterials (Basel) 2020;10:1916.

161. Lei J, Zhang X, Zhou Z. Recent advances in MXene: preparation, properties, and applications. Front Phys 2015;10:276-86.

162. Shuck CE, Sarycheva A, Anayee M, et al. Scalable synthesis of Ti3 C2 Tx MXene. Adv Eng Mater 2020;22:1901241.

163. Zhan X, Si C, Zhou J, Sun Z. MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz 2020;5:235-58.

164. Shen S, Ke T, Rajavel K, Yang K, Lin D. Dispersibility and photochemical stability of delaminated MXene flakes in water. Small 2020;16:e2002433.

165. Akuzum B, Maleski K, Anasori B, et al. Rheological characteristics of 2D titanium carbide (MXene) dispersions: a guide for processing MXenes. ACS Nano 2018;12:2685-94.

166. Li Y, Lu Z, Xin B, Liu Y, Cui Y, Hu Y. All-solid-state flexible supercapacitor of carbonized MXene/Cotton fabric for wearable energy storage. Appl Surf Sci 2020;528:146975.

167. Hu M, Li Z, Li G, Hu T, Zhang C, Wang X. All-solid-state flexible fiber-based mxene supercapacitors. Adv Mater Technol 2017;2:1700143.

168. Yu C, Gong Y, Chen R, et al. A solid-state fibriform supercapacitor boosted by host-guest hybridization between the carbon nanotube scaffold and MXene nanosheets. Small 2018:e1801203.

169. Li H, Chen R, Ali M, Lee H, Ko MJ. In Situ Grown MWCNTs/MXenes Nanocomposites on carbon cloth for high-performance flexible supercapacitors. Adv Funct Mater 2020;30:2002739.

170. Ling Z, Ren CE, Zhao MQ, et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc Natl Acad Sci U S A 2014;111:16676-81.

171. Hasan MM, Hossain MM, Chowdhury HK. Two-dimensional MXene-based flexible nanostructures for functional nanodevices: a review. J Mater Chem A 2021;9:3231-69.

172. Zhang CJ, McKeon L, Kremer MP, et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat Commun 2019;10:1795.

173. Wen D, Wang X, Liu L, et al. Inkjet printing transparent and conductive MXene (Ti3C2Tx) films: a strategy for flexible energy storage devices. ACS Appl Mater Interfaces 2021;13:17766-80.

174. Zhu M, Huang Y, Deng Q, et al. Highly flexible, freestanding supercapacitor electrode with enhanced performance obtained by hybridizing polypyrrole chains with MXene. Adv Energy Mater 2016;6:1600969.

175. Qin L, Tao Q, El Ghazaly A, et al. High-performance ultrathin flexible solid-state supercapacitors based on solution processable Mo1.33 C MXene and PEDOT:PSS. Adv Funct Mater 2018;28:1703808.

176. Zhou T, Wu C, Wang Y, et al. Super-tough MXene-functionalized graphene sheets. Nat Commun 2020;11:2077.

177. Wang R, Luo S, Xiao C, et al. MXene-carbon nanotubes layer-by-layer assembly based on-chip micro-supercapacitor with improved capacitive performance. Electrochimica Acta 2021;386:138420.

178. Yu L, Hu L, Anasori B, et al. MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors. ACS Energy Lett 2018;3:1597-603.

179. Zheng X, Shen J, Hu Q, et al. Vapor phase polymerized conducting polymer/MXene textiles for wearable electronics. Nanoscale 2021;13:1832-41.

180. Ma Y, Sheng H, Dou W, et al. Fe2O3 nanoparticles anchored on the Ti3C2Tx MXene paper for flexible supercapacitors with ultrahigh volumetric capacitance. ACS Appl Mater Interfaces 2020;12:41410-8.

181. Patil AM, Kitiphatpiboon N, An X, et al. Fabrication of a high-energy flexible all-solid-state supercapacitor using pseudocapacitive 2D-Ti3C2Tx-MXene and battery-type reduced graphene oxide/nickel-cobalt bimetal oxide electrode materials. ACS Appl Mater Interfaces 2020;12:52749-62.

182. Xie W, Wang Y, Zhou J, et al. MOF-derived CoFe2O4 nanorods anchored in MXene nanosheets for all pseudocapacitive flexible supercapacitors with superior energy storage. Applied Surface Science 2020;534:147584.

183. Choudhury NA, Sampath S, Shukla AK. Hydrogel-polymer electrolytes for electrochemical capacitors: an overview. Energy Environ Sci 2009;2:55-67.

184. Huang Y, Zhong M, Shi F, et al. An intrinsically stretchable and compressible supercapacitor containing a polyacrylamide hydrogel electrolyte. Angew Chem Int Ed Engl 2017;56:9141-5.

185. Han L, Huang H, Fu X, et al. A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor. Chem Eng J 2020;392:123733.

186. Shi X, Wu ZS, Qin J, et al. Graphene-based linear tandem micro-supercapacitors with metal-free current collectors and high-voltage output. Adv Mater 2017;29:1703034.

187. Wu ZS, Liu Z, Parvez K, Feng X, Müllen K. Ultrathin printable graphene supercapacitors with AC line-filtering performance. Adv Mater 2015;27:3669-75.

188. Xiong G, He P, Huang B, Chen T, Bo Z, Fisher TS. Graphene nanopetal wire supercapacitors with high energy density and thermal durability. Nano Energy 2017;38:127-36.

189. Nguyen PT, Jang J, Lee Y, Choi ST, In JB. Laser-assisted fabrication of flexible monofilament fiber supercapacitors. J Mater Chem A 2021;9:4841-50.

190. Zhang X, Fu Q, Huang H, Wei L, Guo X. Silver-quantum-dot-modified MoO3 and MnO2 paper-like freestanding films for flexible solid-state asymmetric supercapacitors. Small 2019;15:e1805235.

191. Kim JW, Park H, Lee G, et al. Paper-like, thin, foldable, and self-healable electronics based on PVA/CNC nanocomposite film. Adv Funct Mater 2019;29:1905968.

192. Liu Z, Zhang J, Liu J, et al. Highly compressible and superior low temperature tolerant supercapacitors based on dual chemically crosslinked PVA hydrogel electrolytes. J Mater Chem A 2020;8:6219-28.

193. Peng H, Lv Y, Wei G, et al. A flexible and self-healing hydrogel electrolyte for smart supercapacitor. J Power Sources 2019;431:210-9.

194. Alipoori S, Mazinani S, Aboutalebi SH, Sharif F. Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: opportunities and challenges. J Energy Storage 2020;27:101072.

195. Wei JS, Ding C, Zhang P, et al. Robust negative electrode materials derived from carbon dots and porous hydrogels for high-performance hybrid supercapacitors. Adv Mater 2019;31:e1806197.

196. Zhao C, Wang C, Yue Z, Shu K, Wallace GG. Intrinsically stretchable supercapacitors composed of polypyrrole electrodes and highly stretchable gel electrolyte. ACS Appl Mater Interfaces 2013;5:9008-14.

197. Fang C, Zhang D. A large areal capacitance structural supercapacitor with a 3D rGO@MnO2 foam electrode and polyacrylic acid-Portland cement - KOH electrolyte. J Mater Chem A 2020;8:12586-93.

198. Cevik E, Bozkurt A. Redox active polymer metal chelates for use in flexible symmetrical supercapacitors: cobalt-containing poly(acrylic acid) polymer electrolytes. J Energy Chem 2021;55:145-53.

199. Huang Y, Zhong M, Huang Y, et al. A self-healable and highly stretchable supercapacitor based on a dual crosslinked polyelectrolyte. Nat Commun 2015;6:10310.

200. Choudhury NA, Sampath S, Shukla AK. Gelatin hydrogel electrolytes and their application to electrochemical supercapacitors. J Electrochem Soc 2008;155:A74.

201. Yun TG, Jang J, Cheong JY, Kim I. Organism epidermis/plant-root inspired ultra-stable supercapacitor for large-scale wearable energy storage applications. Nano Energy 2021;82:105776.

202. Liu J, Song H, Wang Z, Zhang J, Zhang J, Ba X. Stretchable, self-healable, and reprocessable chemical cross-linked ionogels electrolytes based on gelatin for flexible supercapacitors. J Mater Sci 2020;55:3991-4004.

203. Park JH, Rana HH, Lee JY, Park HS. Renewable flexible supercapacitors based on all-lignin-based hydrogel electrolytes and nanofiber electrodes. J Mater Chem A 2019;7:16962-8.

204. Peng Z, Zou Y, Xu S, Zhong W, Yang W. High-performance biomass-based flexible solid-state supercapacitor constructed of pressure-sensitive lignin-based and cellulose hydrogels. ACS Appl Mater Interfaces 2018;10:22190-200.

205. Yang L, Song L, Feng Y, et al. Zinc ion trapping in a cellulose hydrogel as a solid electrolyte for a safe and flexible supercapacitor. J Mater Chem A 2020;8:12314-8.

206. Li X, Yuan L, Liu R, et al. Engineering textile electrode and bacterial cellulose nanofiber reinforced hydrogel electrolyte to enable high-performance flexible all-solid-state supercapacitors. Adv Energy Mater 2021;11:2003010.

207. Wang C, Yokota T, Someya T. Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem Rev 2021;121:2109-46.

208. Chen M, Chen J, Zhou W, Han X, Yao Y, Wong CP. Realizing an all-round hydrogel electrolyte toward environmentally adaptive dendrite-free aqueous Zn-MnO2 batteries. Adv Mater 2021;33:e2007559.

209. Huang H, Han L, Fu X, et al. A powder self-healable hydrogel electrolyte for flexible hybrid supercapacitors with high energy density and sustainability. Small 2021;17:e2006807.

210. Wang J, Liu F, Tao F, Pan Q. Rationally designed self-healing hydrogel electrolyte toward a smart and sustainable supercapacitor. ACS Appl Mater Interfaces 2017;9:27745-53.

211. Tao F, Qin L, Wang Z, Pan Q. Self-healable and cold-resistant supercapacitor based on a multifunctional hydrogel electrolyte. ACS Appl Mater Interfaces 2017;9:15541-8.

212. Yu H, Rouelle N, Qiu A, et al. Hydrogen bonding-reinforced hydrogel electrolyte for flexible, robust, and all-in-one supercapacitor with excellent low-temperature tolerance. ACS Appl Mater Interfaces 2020;12:37977-85.

213. Yang P, Feng C, Liu Y, et al. Thermal self-protection of zinc-ion batteries enabled by smart hygroscopic hydrogel electrolytes. Adv Energy Mater 2020;10:2002898.

214. Peng H, Gao X, Sun K, et al. Physically cross-linked dual-network hydrogel electrolyte with high self-healing behavior and mechanical strength for wide-temperature tolerant flexible supercapacitor. Chemical Engineering Journal 2021;422:130353.

215. Yin B, Zhang S, Ke K, Wang Z. Advanced deformable all-in-one hydrogel supercapacitor based on conducting polymer: toward integrated mechanical and capacitive performance. Journal of Alloys and Compounds 2019;805:1044-51.

216. Guo L, Ma W, Wang Y, et al. A chemically crosslinked hydrogel electrolyte based all-in-one flexible supercapacitor with superior performance. J Alloys Compd 2020;843:155895.

217. Guo Y, Zheng K, Wan P. A flexible stretchable hydrogel electrolyte for healable all-in-one configured supercapacitors. Small 2018;14:e1704497.

218. Hu M, Wang J, Liu J, Zhang J, Ma X, Huang Y. An intrinsically compressible and stretchable all-in-one configured supercapacitor. Chem Commun (Camb) 2018;54:6200-3.

219. Wang K, Zhang X, Li C, et al. Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance. Adv Mater 2015;27:7451-7.

220. Jin X, Song L, Yang H, et al. Stretchable supercapacitor at -30 °C. Energy Environ Sci 2021;14:3075-85.

221. Hsu HH, Liu Y, Wang Y, et al. Mussel-inspired autonomously self-healable all-in-one supercapacitor with biocompatible hydrogel. ACS Sustainable Chem Eng 2020;8:6935-48.

222. Zeng J, Dong L, Sha W, Wei L, Guo X. Highly stretchable, compressible and arbitrarily deformable all-hydrogel soft supercapacitors. Chem Eng J 2020;383:123098.

223. Han J, Wang H, Yue Y, et al. A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network. Carbon 2019;149:1-18.

224. Wen N, Jiang B, Wang X, et al. Overview of polyvinyl alcohol nanocomposite hydrogels for electro-skin, actuator, supercapacitor and fuel cell. Chem Rec 2020;20:773-92.

225. Hua M, Wu S, Ma Y, et al. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 2021;590:594-9.

226. Ben J, Song Z, Liu X, Lü W, Li X. Fabrication and electrochemical performance of PVA/CNT/PANI flexible films as electrodes for supercapacitors. Nanoscale Res Lett 2020;15:151.

227. Jia Z, Gong J, Zeng Y, et al. Bioinspired conductive silk microfiber integrated bioelectronic for diagnosis and wound healing in diabetes. Adv Funct Mater 2021;31:2010461.

228. Jia Z, Lv X, Hou Y, et al. Mussel-inspired nanozyme catalyzed conductive and self-setting hydrogel for adhesive and antibacterial bioelectronics. Bioact Mater 2021;6:2676-87.

229. Gan D, Shuai T, Wang X, et al. Mussel-inspired redox-active and hydrophilic conductive polymer nanoparticles for adhesive hydrogel bioelectronics. Nanomicro Lett 2020;12:169.

230. Han L, Liu K, Wang M, et al. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance. Adv Funct Mater 2018;28:1704195.

231. Gan D, Huang Z, Wang X, et al. Graphene oxide-templated conductive and redox-active nanosheets incorporated hydrogels for adhesive bioelectronics. Adv Funct Mater 2019;30:1907678.

232. Han L, Lu X, Wang M, et al. A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics. Small 2017;13:1601916.

233. Zhang C, Wu B, Zhou Y, Zhou F, Liu W, Wang Z. Mussel-inspired hydrogels: from design principles to promising applications. Chem Soc Rev 2020;49:3605-37.

234. Xie C, Wang X, He H, Ding Y, Lu X. Mussel-inspired hydrogels for self-adhesive bioelectronics. Adv Funct Mater 2020;30:1909954.

235. Son EJ, Kim JH, Kim K, Park CB. Quinone and its derivatives for energy harvesting and storage materials. J Mater Chem A 2016;4:11179-202.

236. Han C, Li H, Shi R, et al. Organic quinones towards advanced electrochemical energy storage: recent advances and challenges. J Mater Chem A 2019;7:23378-415.

237. Katsuyama Y, Nakayasu Y, Oizumi K, Fujihara Y, Kobayashi H, Honma I. Quinone-based redox supercapacitor using highly conductive hard carbon derived from oak wood. Adv Sustainable Syst 2019;3:1900083.

238. Sumboja A, Foo CY, Wang X, Lee PS. Large areal mass, flexible and free-standing reduced graphene oxide/manganese dioxide paper for asymmetric supercapacitor device. Adv Mater 2013;25:2809-15.

239. Wang S, Liu N, Su J, et al. Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. ACS Nano 2017;11:2066-74.

240. Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater 2019;31:e1904765.

241. Lee Y, Myoung J, Cho S, et al. Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins. ACS Nano 2021;15:1795-804.

242. Hua Q, Sun J, Liu H, et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat Commun 2018;9:244.

243. Liu Z, Li H, Shi B, Fan Y, Wang ZL, Li Z. Wearable and implantable triboelectric nanogenerators. Adv Funct Mater 2019;29:1808820.

244. Liu W, Wang Z, Wang G, et al. Integrated charge excitation triboelectric nanogenerator. Nat Commun 2019;10:1426.

245. Zang X, Zhang R, Zhen Z, et al. Flexible, temperature-tolerant supercapacitor based on hybrid carbon film electrodes. Nano Energy 2017;40:224-32.

246. Rong Q, Lei W, Huang J, Liu M. Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors. Adv Energy Mater 2018;8:1801967.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/