REFERENCES

1. Yu H, Li N, Zhao N. How far are we from achieving self‐powered flexible health monitoring systems: an energy perspective. Adv Energy Mater 2021;11:2002646.

2. Wu C, Kim TW, Park JH, et al. Self-powered tactile sensor with learning and memory. ACS Nano 2020;14:1390-8.

3. Yin R, Wang D, Zhao S, Lou Z, Shen G. Wearable sensors - enabled human-machine interaction systems: from design to application. Adv Funct Mater 2021;31:2008936.

4. Wu Y, Liu Y, Zhou Y, et al. A skin-inspired tactile sensor for smart prosthetics. Sci Robot 2018;3:eaat0429.

5. Pyo S, Lee J, Bae K, Sim S, Kim J. Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv Mater 2021:e2005902.

6. Shi J, Wang L, Dai Z, et al. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 2018;14:e1800819.

7. Yamamoto Y, Harada S, Yamamoto D, et al. Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Sci Adv 2016;2:e1601473.

8. Dahiya RS, Valle M. Robotic tactile sensing: technologies and system. Springer: Science & Business Media; 2012.

9. Sundaram S, Kellnhofer P, Li Y, Zhu JY, Torralba A, Matusik W. Learning the signatures of the human grasp using a scalable tactile glove. Nature 2019;569:698-702.

10. Wang Z, Guan X, Huang H, Wang H, Lin W, Peng Z. Full 3D printing of stretchable piezoresistive sensor with hierarchical porosity and multimodulus architecture. Adv Funct Mater 2019;29:1807569.

11. Park YJ, Sharma BK, Shinde SM, et al. All MoS2-based large area, skin-attachable active-matrix tactile sensor. ACS Nano 2019;13:3023-30.

12. Ma L, Shuai X, Hu Y, et al. A highly sensitive and flexible capacitive pressure sensor based on a micro-arrayed polydimethylsiloxane dielectric layer. J Mater Chem C 2018;6:13232-40.

13. Chen X, Shao J, Tian H, et al. Scalable imprinting of flexible multiplexed sensor arrays with distributed piezoelectricity - enhanced micropillars for dynamic tactile sensing. Adv Mater Technol 2020;5:2000046.

14. Chen Z, Wang Z, Li X, et al. Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures. ACS Nano 2017;11:4507-13.

15. Wang X, Zhang H, Dong L, et al. Self-powered high-resolution and pressure-sensitive triboelectric sensor matrix for real-time tactile mapping. Adv Mater 2016;28:2896-903.

16. Rao J, Chen Z, Zhao D, et al. Tactile electronic skin to simultaneously detect and distinguish between temperature and pressure based on a triboelectric nanogenerator. Nano Energy 2020;75:105073.

17. Shin J, Jeong B, Kim J, et al. Sensitive wearable temperature sensor with seamless monolithic integration. Adv Mater 2020;32:e1905527.

18. Dinh T, Phan H, Qamar A, Woodfield P, Nguyen N, Dao DV. Thermoresistive effect for advanced thermal sensors: fundamentals, design considerations, and applications. J Microelectromech Syst 2017;26:966-86.

19. Li M, Chen J, Zhong W, et al. Large-area, wearable, self-powered pressure-temperature sensor based on 3D thermoelectric spacer fabric. ACS Sens 2020;5:2545-54.

20. Horta Romarís L, González Rodríguez MV, Huang B, et al. Multifunctional electromechanical and thermoelectric polyaniline-poly(vinyl acetate) latex composites for wearable devices. J Mater Chem C 2018;6:8502-12.

21. Lee M, Nicholls H. Review Article Tactile sensing for mechatronics - a state of the art survey. Mechatronics 1999;9:1-31.

22. Lee S, Reuveny A, Reeder J, et al. A transparent bending-insensitive pressure sensor. Nat Nanotechnol 2016;11:472-8.

23. Wu C, Wang AC, Ding W, Guo H, Wang ZL. Triboelectric nanogenerator: a foundation of the energy for the new era. Adv Energy Mater 2019;9:1802906.

24. Liu D, Shi P, Ren W, et al. A new kind of thermocouple made of p-type and n-type semi-conductive oxides with giant thermoelectric voltage for high temperature sensing. J Mater Chem C 2018;6:3206-11.

25. Shi L, Li Z, Chen M, Qin Y, Jiang Y, Wu L. Quantum effect-based flexible and transparent pressure sensors with ultrahigh sensitivity and sensing density. Nat Commun 2020;11:3529.

26. Yang JC, Mun J, Kwon SY, Park S, Bao Z, Park S. Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics, and prosthetics. Adv Mater 2019;31:e1904765.

27. Bae GY, Pak SW, Kim D, et al. Linearly and highly pressure-sensitive electronic skin based on a bioinspired hierarchical structural array. Adv Mater 2016;28:5300-6.

28. Chou HH, Nguyen A, Chortos A, et al. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat Commun 2015;6:8011.

29. Zhao XH, Ma SN, Long H, et al. Multifunctional sensor based on porous carbon derived from metal-organic frameworks for real time health monitoring. ACS Appl Mater Interfaces 2018;10:3986-93.

30. Wang C, Xia K, Zhang M, Jian M, Zhang Y. An all-silk-derived dual-mode E-skin for simultaneous temperature-pressure detection. ACS Appl Mater Interfaces 2017;9:39484-92.

31. Zu G, Kanamori K, Nakanishi K, Huang J. Superhydrophobic ultraflexible triple-network graphene/polyorganosiloxane aerogels for a high-performance multifunctional temperature/strain/pressure sensing array. Chem Mater 2019;31:6276-85.

32. Zhang F, Zang Y, Huang D, Di CA, Zhu D. Flexible and self-powered temperature-pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat Commun 2015;6:8356.

33. Han S, Jiao F, Khan ZU, Edberg J, Fabiano S, Crispin X. Thermoelectric polymer aerogels for pressure-temperature sensing applications. Adv Funct Mater 2017;27:1703549.

34. Wang Y, Wu H, Xu L, Zhang H, Yang Y, Wang ZL. Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Sci Adv 2020;6:eabb9083.

35. Wang Y, Mao H, Wang Y, Zhu P, Liu C, Deng Y. 3D geometrically structured PANI/CNT-decorated polydimethylsiloxane active pressure and temperature dual-parameter sensors for man-machine interaction applications. J Mater Chem A 2020;8:15167-76.

36. Gui Q, He Y, Gao N, Tao X, Wang Y. A skin-inspired integrated sensor for synchronous monitoring of multiparameter signals. Adv Funct Mater 2017;27:1702050.

37. Jung M, Vishwanath SK, Kim J, et al. Transparent and flexible mayan-pyramid-based pressure sensor using facile-transferred indium tin oxide for bimodal sensor applications. Sci Rep 2019;9:14040.

38. Wang Z, Zhang L, Liu J, Li C. A flexible bimodal sensor based on an electrospun nanofibrous structure for simultaneous pressure-temperature detection. Nanoscale 2019;11:14242-9.

39. Bae GY, Han JT, Lee G, et al. Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity. Adv Mater 2018;30:e1803388.

40. Wu R, Ma L, Hou C, et al. Silk composite electronic textile sensor for high space precision 2D combo temperature-pressure sensing. Small 2019;15:e1901558.

41. Shin S, Lee W, Kim S, et al. Ion-conductive self-healing hydrogels based on an interpenetrating polymer network for a multimodal sensor. Chem Eng J 2019;371:452-60.

42. Jung M, Kim K, Kim B, et al. Paper-Based Bimodal Sensor for Electronic Skin Applications. ACS Appl Mater Interfaces 2017;9:26974-82.

43. Jung M, Kim K, Kim B, Lee KJ, Kang JW, Jeon S. Vertically stacked nanocellulose tactile sensor. Nanoscale 2017;9:17212-9.

44. Kim K, Jung M, Kim B, et al. Low-voltage, high-sensitivity and high-reliability bimodal sensor array with fully inkjet-printed flexible conducting electrode for low power consumption electronic skin. Nano Energy 2017;41:301-7.

45. Zhu P, Wang Y, Sheng M, Wang Y, Yu Y, Deng Y. A flexible active dual-parameter sensor for sensitive temperature and physiological signal monitoring via integrating thermoelectric and piezoelectric conversion. J Mater Chem A 2019;7:8258-67.

46. Zhu P, Wang Y, Wang Y, Mao H, Zhang Q, Deng Y. Flexible 3D architectured piezo/thermoelectric bimodal tactile sensor array for E-skin application. Adv Energy Mater 2020;10:2001945.

47. Song K, Zhao R, Wang ZL, Yang Y. Conjuncted pyro-piezoelectric effect for self-powered simultaneous temperature and pressure sensing. Adv Mater 2019;31:e1902831.

48. Yu J, Kiwi J, Zivkovic I, Rønnow HM, Wang T, Rtimi S. Quantification of the local magnetized nanotube domains accelerating the photocatalytic removal of the emerging pollutant tetracycline. Appl Catal B 2019;248:450-8.

49. O'regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991;353:737-40.

50. Michaels H, Rinderle M, Freitag R, et al. Dye-sensitized solar cells under ambient light powering machine learning: towards autonomous smart sensors for the internet of things. Chem Sci 2020;11:2895-906.

51. Wang Y, Zhu W, Deng Y, et al. Self-powered wearable pressure sensing system for continuous healthcare monitoring enabled by flexible thin-film thermoelectric generator. Nano Energy 2020;73:104773.

52. Wang Y, Liu G, Sheng M, Yu C, Deng Y. Flexible thermopower generation over broad temperature range by PANI/nanorod hybrid-based p-n couples. J Mater Chem A 2019;7:1718-24.

53. Feng J, Zhu W, Zhang Z, Cao L, Yu Y, Deng Y. Enhanced electrical transport properties via defect control for screen-printed Bi2Te3 films over a wide temperature range. ACS Appl Mater Interfaces 2020;12:16630-8.

54. Sheng M, Wang Y, Liu C, Xiao Y, Zhu P, Deng Y. Significantly enhanced thermoelectric performance in SWCNT films via carrier tuning for high power generation. Carbon 2020;158:802-7.

55. Park DY, Joe DJ, Kim DH, et al. Self-Powered real-time arterial pulse monitoring using ultrathin epidermal piezoelectric sensors. Adv Mater 2017;29:1702308.

56. Chen X, Li X, Shao J, et al. High-performance piezoelectric nanogenerators with imprinted P(VDF-TrFE)/BaTiO3 nanocomposite micropillars for self-powered flexible sensors. Small 2017;13:1604245.

57. Fan FR, Lin L, Zhu G, Wu W, Zhang R, Wang ZL. Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films. Nano Lett 2012;12:3109-14.

58. Varma S, Sambath Kumar K, Seal S, Rajaraman S, Thomas J. Fiber-type solar cells, nanogenerators, batteries, and supercapacitors for wearable applications. Adv Sci (Weinh) 2018;5:1800340.

59. Pan Z, Ren J, Guan G, et al. Synthesizing nitrogen-doped core-sheath carbon nanotube films for flexible lithium ion batteries. Adv Energy Mater 2016;6:1600271.

60. Wang N, Dou W, Hao S, et al. Tactile sensor from self-chargeable piezoelectric supercapacitor. Nano Energy 2019;56:868-74.

61. Wang J, Lou H, Meng J, Peng Z, Wang B, Wan J. Stretchable energy storage E-skin supercapacitors and body movement sensors. Sens Actuators B Chem 2020;305:127529.

62. Han S, Kim J, Won SM, et al. Battery-free, wireless sensors for full-body pressure and temperature mapping. Sci Transl Med 2018;10:eaan4950.

63. Song Y, Min J, Yu Y, et al. Wireless battery-free wearable sweat sensor powered by human motion. Sci Adv 2020;6:eaay9842.

64. Luo Y, Li Y, Sharma P, et al. Learning human-environment interactions using conformal tactile textiles. Nat Electron 2021;4:193-201.

65. An BW, Heo S, Ji S, Bien F, Park JU. Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat Commun 2018;9:2458.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/