fig1

Recent progress in flexible tactile sensor systems: from design to application

Figure 1. Diagram of the application of flexible tactile sensors. Human-machine interfaces. The brain-computer interfaces. Reproduced with permission from Ref.[97]. Copyright© 2018. AAAS. Integrated contact lens sensor system. Reproduced with permission from Ref.[94]. Copyright© 2021. Elsevier. Constructed sensor sleeve. Reproduced with permission from Ref.[105]. Copyright© 2020. Springer Nature; Intelligent robots. Microrobots, reproduced with permission from Ref.[96]. Copyright© 2020. OAE Publishing Inc. Robot hand responding to “ok” gesture. Reproduced with permission from Ref.[57]. Copyright© 2021. Elsevier. Social robotics. Reproduced with permission from Ref.[97]. Copyright© 2018. AAAS; Health monitoring. Tactile sensor for speaking pressure monitoring. Reproduced with permission from Ref.[52]. Copyright© 2014. Springer Nature. A wireless sensor system for health monitoring in neonatal. Reproduced with permission from Ref.[23]. Copyright© 2021. Springer Nature. Flexible exoskeleton. Reproduced with permission from Ref.[100]. Copyright© 2021. AAAS; Medical treatment. A piezoelectric sensor for energy harvesting in the operation of heart pacemakers. Reproduced with permission from Ref.[54]. Copyright© 2014. PNAS. Eye astigmatism treatment system. Reproduced with permission from Ref.[103]. Copyright© 2020. AAAS.

Soft Science
ISSN 2769-5441 (Online)
Follow Us

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/

Portico

All published articles are preserved here permanently:

https://www.portico.org/publishers/oae/