1. Guiseppi-Elie A. Electroconductive hydrogels: synthesis, characterization and biomedical applications. Biomaterials 2010;31:2701-16.
2. Li G, Li C, Li G, et al. Development of conductive hydrogels for fabricating flexible strain sensors. Small 2022;18:e2101518.
3. Hu S, Zhou L, Tu L, et al. Elastomeric conductive hybrid hydrogels with continuous conductive networks. J Mater Chem B 2019;7 :2389-97.
4. Gan D, Han L, Wang M, et al. Conductive and tough hydrogels based on biopolymer molecular templates for controlling in situ formation of polypyrrole nanorods. ACS Appl Mater Interfaces 2018;10:36218-28.
5. Rong Q, Lei W, Liu M. Conductive hydrogels as smart materials for flexible electronic devices. Chemistry 2018;24:16930-43.
6. Wang Z, Cong Y, Fu J. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors. J Mater Chem B 2020;8:3437-59.
7. Sun X, Yao F, Li J. Nanocomposite hydrogel-based strain and pressure sensors: a review. J Mater Chem A 2020;8:18605-23.
8. Zhang YZ, El-Demellawi JK, Jiang Q, G et al. MXene hydrogels: fundamentals and applications. Chem Soc Rev 2020;49:7229-51.
9. Wang Q, Pan X, Wang X, et al. Fabrication strategies and application fields of novel 2D Ti3C2Tx (MXene) composite hydrogels: A mini-review. Ceram Int 2021;47:4398-403.
10. Vieira S, da Silva Morais A, Garet E, et al. Methacrylated gellan gum/poly-l-lysine polyelectrolyte complex beads for cell-based therapies. ACS Biomater Sci Eng 2021;7:4898-913.
11. Lee CJ, Wu H, Hu Y, et al. Ionic conductivity of polyelectrolyte hydrogels. ACS Appl Mater Interfaces 2018;10:5845-52.
12. Wei J, Zhou J, Su S, Jiang J, Feng J, Wang Q. Water-deactivated polyelectrolyte hydrogel electrolytes for flexible high-voltage supercapacitors. ChemSusChem 2018;11:3410-5.
13. Rosso F, Barbarisi A, Barbarisi M, et al. New polyelectrolyte hydrogels for biomedical applications. Mater Sci Eng C 2003;23:371-6.
14. Rao KM, Kumar A, Han SS. Polysaccharide-based magnetically responsive polyelectrolyte hydrogels for tissue engineering applications. J Mater Sci Technol 2018;34:1371-7.
15. Lam J, Clark EC, Fong EL, et al. Evaluation of cell-laden polyelectrolyte hydrogels incorporating poly(L-Lysine) for applications in cartilage tissue engineering. Biomaterials 2016;83:332-46.
16. Kwon HJ, Yasuda K, Gong JP, Ohmiya Y. Polyelectrolyte hydrogels for replacement and regeneration of biological tissues. Macromol Res 2014;22:227-35.
17. Patil J, Kamalapur M, Marapur S, Kadam D. Ionotropic gelation and polyelectrolyte complexation: the novel techniques to design hydrogel particulate sustained, modulated drug delivery system: a review. Dig J Nanomater Biostruct 2010;5:241-8.
18. Kwon HJ. Tissue engineering of muscles and cartilages using polyelectrolyte hydrogels. Adv Mater Sci Eng 2014;2014:1-7.
19. Lu X, Yu M, Wang G, Tong Y, Li Y. Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci 2014;7:2160-81.
20. Zhu C, Yang P, Chao D, et al. All metal nitrides solid-state asymmetric supercapacitors. Adv Mater 2015;27:4566-71.
21. Wu C, Lu X, Peng L, et al. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat Commun 2013;4:2431.
22. Yang C, Suo Z. Hydrogel ionotronics. Nat Rev Mater 2018;3:125-42.
23. Heo S, Seo H, Song C, Shin S, Kwon K. Polyelectrolyte-derived adhesive, super-stretchable hydrogel for a stable, wireless wearable sensor. J Mater Chem C 2021;9:16778-87.
24. Zhou Y, Fei X, Tian J, Xu L, Li Y. A ionic liquid enhanced conductive hydrogel for strain sensing applications. J Colloid Interface Sci 2022;606:192-203.
25. Diao W, Wu L, Ma X, et al. Reversibly highly stretchable and self-healable zwitterion-containing polyelectrolyte hydrogel with high ionic conductivity for high-performance flexible and cold-resistant supercapacitor. J Appl Polym Sci 2020;137:48995.
26. Tiyapiboonchaiya C, Pringle JM, Sun J, et al. The zwitterion effect in high-conductivity polyelectrolyte materials. Nat Mater 2003;3:29-32.
27. Peng X, Liu H, Yin Q, et al. A zwitterionic gel electrolyte for efficient solid-state supercapacitors. Nat Commun 2016;7:11782.
28. Diao W, Wu L, Ma X, et al. Highly stretchable, ionic conductive and self-recoverable zwitterionic polyelectrolyte-based hydrogels by introducing multiple supramolecular sacrificial bonds in double network. J Appl Polym Sci 2019;136:47783.
29. Wang D, Gong X, Heeger PS, Rininsland F, Bazan GC, Heeger AJ. Biosensors from conjugated polyelectrolyte complexes. Proc Nat Acad Sci USA 2002;99:49-53.
30. Cao B, Lee CJ, Zeng Z, et al. Electroactive poly(sulfobetaine-3,4-ethylenedioxythiophene) (PSBEDOT) with controllable antifouling and antimicrobial properties. Chem Sci 2016;7:1976-81.
31. Na YH. Double network hydrogels with extremely high toughness and their applications. Korea-Aust Rheol J 2013;25:185-96.
32. Hou W, Sheng N, Zhang X, et al. Design of injectable agar/NaCl/polyacrylamide ionic hydrogels for high performance strain sensors. Carbohydr Polym 2019;211:322-8.
33. Tian X, Yang P, Yi Y, et al. Self-healing and high stretchable polymer electrolytes based on ionic bonds with high conductivity for lithium batteries. J Power Sources 2020:450.
34. Xu J, Chen J, Zhang Y, Liu T, Fu J. A fast room-temperature self-healing glassy polyurethane. Angew Chem Int Ed Engl 2021;60:7947-55.
35. Ye S, Ma W, Shao W, Ejeromedoghene O, Fu G, Kang M. Gradient dynamic cross-linked photochromic multifunctional polyelectrolyte hydrogels for visual display and information storage application. Polymer 2022;243:124642.
36. Song H, Sun Y, Zhu J, Xu J, Zhang C, Liu T. Hydrogen-bonded network enables polyelectrolyte complex hydrogels with high stretchability, excellent fatigue resistance and self-healability for human motion detection. Composit Part B Eng 2021;217:108901.
37. Chen Q, Zhu L, Huang L, et al. Fracture of the physically cross-linked first network in hybrid double network hydrogels. Macromolecules 2014;47:2140-8.
38. Chen Q, Wei D, Chen H, et al. Simultaneous enhancement of stiffness and toughness in hybrid double-network hydrogels via the first, physically linked network. Macromolecules 2015;48:8003-10.
39. Sun TL, Kurokawa T, Kuroda S, et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater 2013;12:932-7.
40. Peng K, Wang W, Zhang J, et al. Preparation of chitosan/sodium alginate conductive hydrogels with high salt contents and their application in flexible supercapacitors. Carbohydr Polym 2022;278:118927.
41. Zhao J, Chen Y, Yao Y, et al. Preparation of the polyelectrolyte complex hydrogel of biopolymers via a semi-dissolution acidification sol-gel transition method and its application in solid-state supercapacitors. J Power Sources 2018;378:603-9.
42. Park S, Parida K, Lee PS. Deformable and transparent ionic and electronic conductors for soft energy devices. Adv Energy Mater 2017;7:1701369.
43. Gong JP. Why are double network hydrogels so tough? Soft Matter 2010;6:2583-90.
44. Wei S, Qu G, Luo G, et al. Scalable and automated fabrication of conductive tough-hydrogel microfibers with ultrastretchability, 3D printability, and stress sensitivity. ACS Appl Mater Interfaces 2018;10:11204-12.
45. Yu HC, Zheng SY, Fang L, et al. Reversibly transforming a highly swollen polyelectrolyte hydrogel to an extremely tough one and its application as a tubular grasper. Adv Mater 2020;32:2005171.
46. Yin H, Akasaki T, Lin ST, et al. Double network hydrogels from polyzwitterions: high mechanical strength and excellent anti-biofouling properties. J Mater Chem B 2013;1:3685-93.
47. Huang KT, Hsieh PS, Dai LG, Huang CJ. Complete zwitterionic double network hydrogels with great toughness and resistance against foreign body reaction and thrombus. J Mater Chem B 2020;8:7390-02.
48. Kim ES, Song DB, Choi KH, Lee JH, Suh DH, Choi WJ. Robust and recoverable dual cross-linking networks in pressure-sensitive adhesives. J Polym Sci 2020;58:3358-69.
49. Cao J, Wang Y, He C, Kang Y, Zhou J. Ionically crosslinked chitosan/poly(acrylic acid) hydrogels with high strength, toughness and antifreezing capability. Carbohydr Polym 2020;242:116420.
50. Han Z, Zhou P, Duan C. Extremely stretchable, stable and antibacterial double network organogels based on hydrogen bonding interaction. Colloids Surfaces A Physicochem Eng Aspects 2020;602:125065.
51. Feng Z, Zuo H, Gao W, Ning N, Tian M, Zhang L. A robust, self-healable, and shape memory supramolecular hydrogel by multiple hydrogen bonding interactions. Macromol Rapid Commun 2018;39:1800138.
52. Wei Z, Yang JH, Zhou J, et al. Self-healing gels based on constitutional dynamic chemistry and their potential applications. Chem Soc Rev 2014;43:8114-31.
53. Yuan T, Cui X, Liu X, Qu X, Sun J. Highly tough, stretchable, self-healing, and recyclable hydrogels reinforced by in situ-formed polyelectrolyte complex nanoparticles. Macromolecules 2019;52:3141-9.
54. Fang X, Sun J. One-step synthesis of healable weak-polyelectrolyte-based hydrogels with high mechanical strength, toughness, and excellent self-recovery. ACS Macro Letters 2019;8:500-5.
55. Wu J, Wu Z, Lu X, et al. Ultrastretchable and stable strain sensors based on antifreezing and self-healing ionic organohydrogels for human motion monitoring. ACS Appl Mater Interfaces 2019;11:9405-14.
56. Liu H, Wang X, Cao Y, et al. Freezing-tolerant, highly sensitive strain and pressure sensors assembled from ionic conductive hydrogels with dynamic cross-links. ACS Appl Mater Interfaces 2020;12:25334-44.
57. Zhou D, Chen F, Handschuh-Wang S, Gan T, Zhou X, Zhou X. Biomimetic extreme-temperature- and environment-adaptable hydrogels. Chemphyschem 2019;20:2139-54.
58. Cheng Y, Zang J, Zhao X, Wang H, Hu Y. Nanocellulose-enhanced organohydrogel with high-strength, conductivity, and anti-freezing properties for wearable strain sensors. Carbohydr Polym 2022;277:118872.
59. Morelle XP, Illeperuma WR, Tian K, Bai R, Suo Z, Vlassak JJ. Highly stretchable and tough hydrogels below water freezing temperature. Adv Mater 2018;30:1801541.
60. Zhao R, Yang H, Nie B, Hu L. Highly transparent, antifreezing and stretchable conductive organohydrogels for strain and pressure sensors. Sci China Tech Sci 2021;64:2532-40.
61. Dashnau JL, Nucci NV, Sharp KA, Vanderkooi JM. Hydrogen bonding and the cryoprotective properties of glycerol/water mixtures. J Phys Chem B 2006;110:13670-77.
62. Ying B, Chen RZ, Zuo R, Li J, Liu X. An anti-freezing, ambient-stable and highly stretchable ionic skin with strong surface adhesion for wearable sensing and soft robotics. Adv Funct Mater 2021;31:2104665.
63. Shao C, Wang M, Meng L, et al. Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem Mat 2018;30:3110-21.
64. Gan D, Xing W, Jiang L, et al. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat Commun 2019;10:1487.
65. Fu C, Lin J, Tang Z, et al. Design of asymmetric-adhesion lignin reinforced hydrogels with anti-interference for strain sensing and moist air induced electricity generator. Int J Biol Macromol 2022;201:104-10.
66. Wang J, Wang L, Wu C, et al. Antibacterial zwitterionic polyelectrolyte hydrogel adhesives with adhesion strength mediated by electrostatic mismatch. ACS Appl Mater Interfaces 2020;12:46816-26.
67. Akhtar MF, Hanif M, Ranjha NM. Methods of synthesis of hydrogels ... A review. Saudi Pharm J 2016;24:554-9.
68. Hu X, Wang Y, Zhang L, Xu M. Formation of self-assembled polyelectrolyte complex hydrogel derived from salecan and chitosan for sustained release of Vitamin C. Carbohydr Polym 2020;234:115920.
69. Huang KT, Ishihara K, Huang CJ. Polyelectrolyte and antipolyelectrolyte effects for dual salt-responsive interpenetrating network hydrogels. Biomacromolecules 2019;20:3524-34.
70. Tong Z, Yang J, Lin L, et al. In situ synthesis of poly (gamma- glutamic acid)/alginate/AgNP composite microspheres with antibacterial and hemostatic properties. Carbohydr Polym 2019;221:21-8.
71. Maiz-Fernandez S, Perez-Alvarez L, Ruiz-Rubio L, Vilas-Vilela JL, Lanceros-Mendez S. Polysaccharide-based in situ self-healing hydrogels for tissue engineering applications. Polymers (Basel) 2020;12:2261.
72. Li YQ, Zhu WB, Yu XG, et al. Multifunctional wearable device based on flexible and conductive carbon sponge/polydimethylsiloxane composite. ACS Appl Mater Interfaces 2016;8:33189-96.
73. Yao S, Zhu Y. Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires. Nanoscale 2014;6:2345-52.
74. Zhang J, Chen L, Shen B, et al. Highly transparent, self-healing, injectable and self-adhesive chitosan/polyzwitterion-based double network hydrogel for potential 3D printing wearable strain sensor. Mater Sci Eng C Mater Biol Appl 2020;117:111298.
75. Sui X, Guo H, Cai C, et al. Ionic conductive hydrogels with long-lasting antifreezing, water retention and self-regeneration abilities. Chem Eng J 2021;419:129478.
76. Dos Santos CA, Seckler MM, Ingle AP, et al. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci 2014;103:1931-44.
77. Teymourinia H, Salavati-Niasari M, Amiri O. Simple synthesis of Cu2O/GQDs nanocomposite with different morphologies fabricated by tuning the synthesis parameters as novel antibacterial material. Composit Part B Eng 2019;172:785-94.
78. Chen T, Chen Y, Rehman HU, et al. Ultratough, self-healing, and tissue-adhesive hydrogel for wound dressing. ACS Appl Mater Interfaces 2018;10:33523-31.
79. Yang J, Chen Y, Zhao L, et al. Preparation of a chitosan/carboxymethyl chitosan/AgNPs polyelectrolyte composite physical hydrogel with self-healing ability, antibacterial properties, and good biosafety simultaneously, and its application as a wound dressing. Composit Part B Eng 2020;197:108139.
80. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 2008;60:1638-49.
Comments
Comments must be written in English. Spam, offensive content, impersonation, and private information will not be permitted. If any comment is reported and identified as inappropriate content by OAE staff, the comment will be removed without notice. If you have any queries or need any help, please contact us at support@oaepublish.com.